This user manual describes all items concerning the operation of this CNC system in detail. However, it is impossible to give particular descriptions for all unnecessary or unallowable operations due to length limitation and products application conditions; Therefore, the items not presented herein should be considered impractical or unallowable.

Copyright is reserved to GSK CNC Equipment Co., Ltd. It is illegal for any organization or individual to publish or reprint this manual. GSK CNC Equipment Co., Ltd. reserves the right to ascertain their legal liability.

## Preface

### Your Excellency,

We are honored by your purchase of products from GSK CNC Equipment Co., Ltd. This manual introduces property, installation, connection, debugging, operation and maintenance of DAT Series AC Servo Driver in detail. To ensure safe and efficient work, please read this manual carefully before installation and operation.

New products of DAT Series AC Servo Drive Unit include DAT2030, DAT2050, DAT2075, DAT2100 and bus-type ones such as DAT2030C, DAT2050C, DAT2075C and DAT2100C.

This manual applies to the software version: V1.05 of DAT2000 series and V1.05 of DAT2000C series.

Please read the manual carefully before installation and using the product to ensure it works safely, normally and efficiently.

To avoid operator and other personal injury and machine damage, please pay special attention to the following warning label while you read the manual.



If the motor operates incorrectly, it will cause damage or death.

If the motor operates incorrectly, it will cause medium or slight injury, even property loss.



If this label is not noticed, unexpected result and situation will occur.



Remind important requirements and instructions to user during the operation.



It indicates prohibition (mustn't do)



It indicates forced execution (must do)



Please tighten each terminal of the main circuit with appropriate force.



If the user does not obey the instruction, it will cause connection loosing, wire spark and even a fire.

Please make sure the power is off before wiring.



If the user does not obey the instruction, it will cause electric shock.

Wiring and overhaul must be done by electric engineering professionals.



If the user does not obey the instruction, it will cause electric shock or a fire.

Strictly obey the wiring method of the manual.



If the user does not obey the instruction, it will cause equipment damage and electric shock.

Please don't touch the switch with wet hand.



If the user does not obey the instruction, it will cause electric shock.

Please don't open the cover of the terminal board at power on or at run time.



If the user does not obey the instruction, it will cause electric shock.

Please mount the drive unit on nonflammable subject, and keep it far away from inflammable materials.



If the user does not obey the instruction, it will cause a fire.

Ground terminal PE of the servo unit must be earthed.



If the user does not obey the instruction, it will cause electric shock.

Operations of moving, wiring, checking and maintenance can be done 5 minutes after power off.



If the user does not obey the instruction, it will cause electric shock.

Please tight the power terminal and motor output terminal.



If the user does not obey the instruction, it will cause a fire.

Please don't put hands into the servo unit.



If the user does not obey the instruction, it will cause electric shock.

Please don't directly contact connection terminal of main circuit of the drive unit.



If the user does not obey the instruction, it will cause electric shock.





The drive unit may startup when the power is recovered, the user don't operate the shaft device of the servo motor.



If the user does not obey the instruction, it will cause personal injury.

Don't put the cable on sharp edge. Don't make the cable bear heavy load or tension.

 $\bigcirc$ 

If the user does not obey the instruction, it will cause electric shock, trouble or damage.

Don't prevent heat diffusion or put object on radiator fan or radiator.



If the user does not obey the instruction, it will cause damage or a fire.

When removing the cover on the terminal board, the user don't operate drive device during power is on.



If the user does not obey the instruction, it will cause electric shock.



Match the motor with proper servo unit.



If the user does not obey the instruction, it will cause equipment damage.

Load running can be done after no-load operation is successful.



If the user does not obey the instruction, it will cause equipment damage.

Don't hold the cable and motor shaft during motor transportation.



If the user does not obey the instruction, it will cause equipment damage.

The power level added to each terminal should correspond to the one specified in the user manual.



If the user does not obey the instruction, it will cause equipment damage.

Troubleshooting before operation when the alarm occurs.



If the user does not obey the instruction, it will cause equipment damage.

If the elements of the spindle drive unit is missed or damaged, please don't operate and contact the seller immediately.



If the user does not obey the instruction, it will cause equipment damage.



Don't connect power input wire R, S, T to motor output terminal U, V, W.



If the user does not obey the instruction, it will cause equipment damage.

Please don't touch the motor and radiator of the servo unit. It generates heat.



If the user does not obey the instruction, you will be burnt.

Please don't change, dismantle or repair the drive unit.



If the user does not obey the instruction, it will cause equipment damage.

Please don't turn on/off the power frequently.



If the user does not obey the instruction, it will cause equipment damage.

The parameters cannot be altered and changed extremely.



If the user does not obey the instruction, it will cause equipment damage.

For the abandoned drive unit, the internal electronic device is taken as industrial waste.



it can not be recycled. If the user does not obey the instruction, it will cause accident.

## Safety responsibility

### **Manufacturer Responsibility**

——Be responsible for the danger which should be eliminated and/or controlled on design and configuration of the provided servo unit and accessories.

——Be responsible for the safety of the provided servo unit and accessories.

-----Be responsible for the provided information and advice for the users.

#### **User Responsibility**

——Be trained with the safety operation of servo unit and familiar with the safety operation procedures.

——Be responsible for the dangers caused by adding, changing or altering to the original servo unit and the accessories.

——Be responsible for the failure to observe the provisions for operation, adjustment, maintenance, installation and storage in the manual.

This manual is kept by final user.

We are full of heartfelt gratitude to you for supporting us in the use of GSK's products.

## contents

| СНАРТ    | ER 1 PRODUCT INTRODUCTION                                  | 1        |
|----------|------------------------------------------------------------|----------|
| 1.1      | Basic Knowledge                                            | 1        |
| 1.2      | Confirmation of the Arrived Goods                          | 6        |
|          | 1.2.1 Instruction of Servo Motor Model                     | 6        |
|          | 1.2.2 Instruction of Servo Motor Models Unit               | 7        |
|          | 1.2.3 Appearance of servo unit                             | 8        |
| 1.3      | Technical Specifications                                   | 10       |
|          | 1.3.1 Servo motor technical specifications                 | 10       |
|          | 1.3.2 Technical Specification of Servo Unit                | 13       |
| 1.4      | Order instruction                                          | 15       |
|          | 1.4.1 Order model example                                  | 15       |
|          | 1.4.2 Standard Products Accessories                        | 17       |
| СНАРТ    | ER 2 INSTALLATION                                          | 19       |
| 21       | Servo Motor                                                | 19       |
| 2.1      | 2.1.1 Mounting Dimension of the Servo Motor                | 10       |
|          | 2.1.2 Servo Motor Installation                             |          |
| 22       | Servo Unit                                                 |          |
| <u> </u> | 2.2.1 Installation Dimension                               | 23       |
|          | 2.2.2 Mounting Interval                                    | 24       |
| Chanto   |                                                            | 25       |
| onapte   |                                                            |          |
| 3.1      | Connection of Peripherals                                  | 26       |
| 3.2      | 2.2.4 Terminal Connection of Main Circuit                  |          |
|          | 3.2.1 Terminal Connection of Servo Unit                    |          |
| 2.2      | S.2.2 Instructions for Servo Motor Interface               | عد<br>مد |
| 3.3      | Connection of Control Signal                               | აა<br>იი |
|          | 3.3.1 Definition of Pin CNT of DAT Series Products         |          |
|          | 3.3.2 Input of Speed Command                               |          |
|          | 3.3.5 Input of Position Command                            | ۵۵<br>۵۵ |
|          | 3.3.4 Switching value input                                |          |
| 2.4      | S.S.S Output of Switch Value                               |          |
| 3.4      | 2.4.1 Introductions for CN2 of DAT2000                     |          |
|          | 3.4.2 Introductions for CN2 OF DAT2000C                    |          |
|          | 3.4.2 Connection to Encoder Signal of the Motor            | 45       |
| 35       | GSKLink Communication Eurotion                             | 40       |
| 3.5      | Examples for Different Working Mode                        |          |
| 5.0      | 3.6.1 Speed Mode Wiring of DAT2000 Series Products         |          |
|          | 3.6.2 Position Mode Connection of DAT2000 Series Products  |          |
|          | 3.6.3 Speed Mode Connection of DAT2000C Series Products    | ວາ<br>ຮາ |
|          | 3.6.4 Position Mode Connection of DAT2000C Series Products | 52<br>52 |
| 0114.57  |                                                            |          |
| CHAPT    | EK 4 DISPLAY AND OPERATION                                 | 54       |

# 

| 4.1     | Operation Panel                                          | 54   |
|---------|----------------------------------------------------------|------|
| 4.2     | Display Menu                                             | 54   |
| 4.3     | State Monitoring                                         | 55   |
| 4.4     | Parameter Setting                                        | 59   |
| 4.5     | Parameter Management                                     | 60   |
| СНАРТЕ  | ER 5 DEBUGGING AND OPERATION                             | 62   |
| 5.1     | Manual and Jog operation                                 | 63   |
|         | 5.1.1 Manual Operation                                   | 64   |
|         | 5.1.2 Jog Operation                                      | 65   |
| 5.2     | Speed mode operation                                     | 66   |
|         | 5.2.1 External analog voltage command                    |      |
| 5.0     | 5.2.2 Internal digital command                           |      |
| 5.3     | Position Mode Operation                                  |      |
| Chapter | r 6 FUNCTION DEBUGGING                                   | 73   |
| 6.1     | Fundamental performance parameter debugging illustration | 73   |
| 6.2     | Application of brake releasing signal                    | 75   |
| 6.3     | The switchover of motor rotating direction               | 79   |
| 6.4     | Output of position feedback signal                       | 80   |
| 6.5     | Function Debugging of Position Mode                      |      |
|         | 6.5.1 Position Command E-gear Ratio                      | 82   |
|         | 6.5.2 Position arrival signal (COIN)                     | 83   |
|         | 6.5.3 Pulse deviation zero clearing (CLE)                |      |
|         | 6.5.4 Pulse command inhibition (INH)                     | 84   |
| 6.6     | Function debugging under speed mode                      |      |
|         | 6.6.1 Adjustment of analog command                       |      |
|         | 6.6.2 Speed arrival signal (COIN)                        | 85   |
|         | 6.6.3 Zero speed clamping (ZSL)                          | 86   |
| CHAPTE  | ER 7 PARAMETERS                                          |      |
| 7.1 I   | Parameter List                                           | 87   |
| 7.2     | Parameter Description                                    | 89   |
| CHAPTE  | ER 8 ABNORMALITIES AND REMEDIES                          | 98   |
| 8.1     | Abnormalities Caused by Misuse                           |      |
| 8.2     | Alarms and Remedies                                      |      |
| 8.3 I   | Inspection and Maintenance                               | 105  |
| APPEND  | DIX A MODEL CODE PARAMETERS AND FEED SERVO MOTOR TABL    | E106 |
| APPEND  | DIX B PERIPHERAL EQUIPMENTS                              | 108  |
| B. 1    | 1 External Braking Resistor (Optional)                   |      |
| B. 2    | 2 Circuit Breaker and Contactor (Necessary)              |      |
| B.3     | Three-Phase AC Filter (Recommended)                      |      |
| B.4     | Isolation Transformer (Necessary)                        | 110  |
| APPEND  | DIX C VERSION UPGRADE INSTRUCTION                        |      |

## CHAPTER 1 PRODUCT INTRODUCTION

### 1.1 Basic Knowledge

#### > Basic principle of AC servo drive device

The AC servo drive unit consists of AC servo unit and AC servo motor (three-phase permanent magnet synchronous servo motor, hereafter referred to as the servo motor). Approximate sine wave current with 120° phase difference (namely: DC—AC) are generated in three-phase stator winding of the servo motor through controlling on/off of the power switch tube after three-phase alternating current is rectified to direct current by the servo unit (namely: AC—DC). Rotary magnetic field is formed by the sine wave current and the rotor of the servo motor is made of rare earth permanent materials that with fine anti-degaussing property, therefore, the interaction between the field of motor rotor and rotary field generates electromagnetic torque to rotate the rotor. The higher the current frequency flowing through the motor winding is, the faster speed will be. The bigger the current amplitude flowing through the motor winding is, the bigger the output torque (Torque=force × arm length of the force) will be.

The diagram of main return current, see Fig. 1-1, PG in the figure represents encoder.



Fig.1-1 Main return current diagram of the AC servo drive unit

#### > Basic configuration of AC servo drive device

The servo unit receives the speed (or position) command from a control unit (PC) like computerized numerical control system (CNC) to control the frequency and magnitude of the motor winding current, and make the speed (or rotor angle) of motor rotor approach to the speed (or position) command value. The deviation between the actual value of motor rotor speed (or rotor angle) and the command value is obtained through the feedback signal from the encoder. In addition, the servo unit constantly adjusts frequency and magnitude of the motor winding current to make the deviation between the actual value of motor speed (or rotor anger) and the command value is obtained through the feedback signal from the encoder. In addition, the servo unit constantly adjusts frequency and magnitude of the motor winding current to make the deviation between the actual value of motor speed (or rotor anger) and the command value within a required range. The basic configuration of the servo system is shown in Fig 1-2.





Fig.1-2 Basic configuration of AC servo drive device

#### General concept of control

Control: The process of making the property (eg. Speed) of the object (eg. Servo motor) get or close to the predicted value is called control. The forementioned object is called controlled object. Controlled quantity (Variable): The property of the controlled object. Control unit (controller): The device to achieve control. Setting: The predicted value (command value) of the controlled quantity that is received by the control unit. Feedback: The controlled quantity is taken as input of the controller to affect itself. Feedback device: The device to detect the controlled quantity. According to the vary direction of controlled quantity and setting to the controller output, the feedback is divided into positive feedback (the same direction) and negative feedback (opposite direction). Control system consists of the controller used to achieve the controlled quantity control, the controlled object and the feedback device. The drive device is divided into closed-loop control and open-loop control according to the presence and absence of feedback device, and the position of feedback unit .The closed loop introduced in this manual are all closed loop of negative feedback.

In the AC servo drive unit introduced by this manual, servo unit is a controller, the servo motor is controlled object, the motor speed (or rotor angle) is a controlled quantity, the encoder of the servo motor is a feedback device. The actual speed is detected by the encoder and it is used to speed control to achieve speed feedback. Therefore, the AC servo drive unit belongs to closed loop control system.

• **Open loop control**: There is no feedback device in the control system, and the actual value of the controlled quantity does not affect the controller output. Example: Drive unit of step motor. After output current phase sequence of servo unit of step motor is changed, the rotation of rotor of the step motor should vary with it. Because the step motor are not usually installed speed or position feedback device, the rotation of motor rotor may not vary accurately with the changing of the current phase sequence, which causes so-called "step out".

Open loop control is shown in Fig. 1-3.



Fig. 1-3 Open loop control

• **Closed loop control**: The controlled quantity of the control system is detected by feedback device and is output to the controller. This process affects the output of the controller and then changes the controlled quantity. According to the detection point of the feedback device, the closed loop control id divided into **entirely closed loop control** and **semi closed loop control**. Entirely closed loop control (Fig. 1-4): The controlled quantity is detected directly by the feedback device and it is used for feedback. Mechanical position is used as controlled quantity, grating ruler fixed on the machine as position feedback device, and the encoder of the servo motor is taken as a speed feedback device, realizing the entirely closed loop control of machine position. If the grating ruler is not fixed, the encoder of the servo motor is used as speed feedback device (Fig. 1-5), therefore, this is a semi-closed loop control of a mechanical position.





Fig. 1-5 semi-closed loop control

**PID Control:** also called PID adjustment, is a common algorithm the controller adopted to mathematically deal with input data (setting, feedback). P stands for proportional, which means the input of the controller is to be linearly proportional to the output, the larger the adjustment coefficient is, the more sensitive the system will react and smaller the error is (can not completely eliminated), however, over larger adjustment coefficient will result in system oscillation and instability. I stands for integral, means time integral of system input affects the output (input gradually affects output), the larger the integration time constant is, the more stable the system will be, which can eliminate steady-state error but slows system response at the same time. D stands for differential, which means input differential (slope of input change) affects output, differential control may predict deviation and produce advanced correction action to decrease tracking error and improve dynamic performance; while over large differential coefficient will also result in system oscillation and instability. Along with the adjustment of PID control coefficient at specific control system, the proportional, integral and differential adjustment are mutually affected to make a balance between system reaction speed, control accuracy and stability. As differential adjustment is prone to produce impact and oscillation, the servo system introduced in this manual adopts PI adjustment, that is, proportional and differential adjustment.

#### Concepts of servo control

**GGSK** CNC

There are three basic control models in servo system: location control, speed control and torque control. The system chart is shown in Fig. 1-6.

• **Position control:** set the direction and angle of motor rotation through digital pulse or data communication, the motor rotor controlled by servo unit will rotate to the corresponding angle in accordance with the preset direction. The rotary angle (position) and speed are both controllable.

• **Speed control:** set the direction and angle of motor rotation through analog voltage or data communication, the motor rotor controlled by servo unit will rotate in accordance with the set direction and speed.

• **Torque control:** set the value and direction of the motor output torque through analog voltage or data communication, the servo unit controls the motor rotor's rotation direction and the value of output torque.

The servo device introduced in this manual does not receive signals set by torque at present and the torque control operational mode is not available for the time being.



Fig. 1-6 Three-loop control diagram

#### > Servo performance index

**Servo dynamic reaction characteristics:** refers to the reaction speed, dynamic control error and stable control error of the servo system with set signal or load change. Fig. 1-7 indicates reaction characteristics of the servo system set with step signals (solid line represents the setting signal and dashed line represents the output signal of the servo system).



Fig. 1-7 Servo dynamic reaction curve

- **Rise time t**<sub>r:</sub> the length of time of the speed quantity rise for the first time from zero to 90% of a stable value R (t), which shows the rapidity of dynamic reaction.
- Adjustment time t<sub>s</sub>: The minimum time needed to make the reaction curve reach but not exceed error interval which is used to measure the whole adjustment tempo of the device. The allowed interval refers to plus or minus 5% of the stable value proximal to the step reaction curve stable value R (t).
- **Overshoot**  $\sigma$ : The ratio between the maximum D-value that the rotation output quantity overpasses the stable value (Rmax(t)- R (t)) and the stable value R (t), which reflects the relative stability of the servo device and expressed as percentages, i.e.:

$$\sigma(\%) = \frac{R_{\max}(t) - R(t)}{R(t)} \times 100\%$$

- **Steady-state error:** the difference between the expected output steady-state value and the practical output value after the system rotation speed turned into stable.
- **Servo static performance:** Stability is the most important issue of the servo control system. Servo static performance index, mainly the position accuracy, refers to deviation degree between the practical state and expected state when the system transient process comes to cease. Not only errors from the position measurement device and from the system will affect servo steady-state accuracy, but the internal structure and parameters of the system can also matter. Fig.1-8 shows the position servo static curve.



Fig. 1-8 Position servo static curves

- **Tracking error:** The difference between the movable position of the workbench requested by the command signals (commanding position) and the practical movable position, i.e., tracking error equals to the value of commanding position minus the value of practical position.
- Servo rigidity: servo system's capability to resist the position deviation resulted from load interference.

### **1.2 Confirmation of the Arrived Goods**

Please promptly inspect the received goods in accordance with the following items, any question, please feel free to contact suppliers or our company.

| Inspected Items                                                        | Notes                                                                                                      |  |  |  |  |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Check and confirm if the servo units and servo motors are the ordered. | Please check by the nameplates on the servo units and servo motors                                         |  |  |  |  |  |
| Accessories complete or not                                            | Please check accessories according to packing list,<br>any unmatched ones, refer to order instruction 1.4. |  |  |  |  |  |
| Damaged or not in transport                                            | Check the general appearance of goods to ensure products intact and with no damage.                        |  |  |  |  |  |
| Screw loose or not                                                     | Please check if there is any screw loose with screwdrivers.                                                |  |  |  |  |  |

**Note:** 1. Damaged AC servo unit or the ones without integrated parts can not be installed.

2. AC servo unit should be matched with servo motor with proper property.

### 1.2.1 Instruction of Servo Motor Model



Fig. 1-9 Instruction of servo motor models:

### Chapter 1 Product Introduction



**#1**: Working power of electricity-breaking brake: DC  $(0.9 \sim 1.1) \times 24V$ , interface: triax socket, 1,2 pin are power terminals (have no polarity), 3 pin is the earth terminal. When the 1 and 2 pin plug in power, the electricity-breaking brake doesn't work, while when the power is disconnected, it will brake and the operating time is less or equal to 0.1s.

**#2:** A three-digital number "150" is used to show its value: 150×10<sup>-1</sup>=15, unit: N.m.

**#3:** '□' is a numeric codes, please refer to the installation outline drawing of the motor for the special shaft represented by a certain number.

### 1.2.2 Instruction of Servo Motor Models Unit

#### Nameplate examples:





### 1.2.3 Appearance of servo unit

#### • Appearance of DAT2030 and DAT2050



#### Appearance of DAT2030C and DAT2050C



#### • Appearance of DAT2075 and DAT2100





#### • Appearance of DAT2075C,DAT2100C



### 1.3 Technical Specifications

### 1.3.1 Servo motor technical specifications

| Model                                  | 80SJT-M024C                                                 | 80SJT-M024E           | 80SJT-M032C           | 80SJT-M032E           |  |  |
|----------------------------------------|-------------------------------------------------------------|-----------------------|-----------------------|-----------------------|--|--|
| Project                                | <b>(A</b> □)                                                | <b>(A</b> □)          | <b>(A</b> □)          | <b>(A</b> □)          |  |  |
| Rated Voltage (kW)                     | 0.5                                                         | 0.75                  | 0.66                  | 1.0                   |  |  |
| Pole-pairs                             |                                                             |                       | 4                     |                       |  |  |
| Rated Current (A)                      | 3                                                           | 4.8                   | 5                     | 6.2                   |  |  |
| Zero-speed Torque (N·m)                | 2.4                                                         | 2.4                   | 3.2                   | 3.2                   |  |  |
| Rated Torque (N·m)                     | 2.4                                                         | 2.4                   | 3.2                   | 3.2                   |  |  |
| Maximum Torque (N·m)                   | 7.2                                                         | 7.2                   | 9.6                   | 9.6                   |  |  |
| Rate Rotary speed (r/min)              | 2000                                                        | 3000                  | 2000                  | 3000                  |  |  |
| Maximum Rotary speed (r/min)           | 2500                                                        | 4000                  | 2500                  | 4000                  |  |  |
| Moment of Inertia (kg·m <sup>2</sup> ) | 0.83×10 <sup>-4</sup>                                       | 0.83×10 <sup>-4</sup> | 1.23×10 <sup>-4</sup> | 1.23×10 <sup>-4</sup> |  |  |
| Weight (kg)                            | 2.8                                                         | 2.9                   | 3.4                   | 3.5                   |  |  |
| Insulation Grade                       |                                                             | F (GB7                | 755—2008)             |                       |  |  |
| Oscillation Grade                      |                                                             | R (GB 10              | 0068—2008)            |                       |  |  |
| Protection Grade                       | IP65 (GB 420                                                | 8—2008/IEC 60         | 529: 2001, GB/T       | 4942.1—2006)          |  |  |
| Installation Type                      | IMB5 (Flange i                                              | nstallation) (G       | 3/T 997—2008 / IE     | C 60034-7:2001)       |  |  |
| character of service                   | S1 (Continuous duty) (GB 755–2008)                          |                       |                       |                       |  |  |
| electricity-breaking brake             | Not available                                               |                       |                       |                       |  |  |
| Adaptive Encoder                       | Increment-type 2500 p/r,5000 p/r etc, absolute encoder17bit |                       |                       |                       |  |  |
| Adaptive Encoder                       | single-circuit or multi-coil。                               |                       |                       |                       |  |  |

Table 1-1 Principle Technical Parameters of 80SJT Series Motor

| Model<br>Project                                           | 110SJT-M<br>040D(A□)                                          | 110SJT-M<br>040E(A□)  | 110SJT-M<br>060D(A□)     | 110SJT-M<br>060E(A□)    | 130SJT-M<br>040D(A□) | 130SJT-M<br>050D(A□) |  |
|------------------------------------------------------------|---------------------------------------------------------------|-----------------------|--------------------------|-------------------------|----------------------|----------------------|--|
|                                                            | 1.0                                                           | 1.0                   | 1 5                      | 1.0                     | 1.0                  | 1.2                  |  |
| Pole-Pairs                                                 | 1.0                                                           | 1.2                   | 1.0                      | 1.0<br>1                | 1.0                  | 1.5                  |  |
| Deted Current (A)                                          |                                                               |                       |                          |                         |                      |                      |  |
| Zero-speed Torque                                          | 4.5                                                           | 4                     | 6                        | 6                       | 4                    | 5                    |  |
| Rated Torque (N·m)                                         | 4                                                             | 4                     | 6                        | 6                       | 4                    | 5                    |  |
| Maximum Torque (N·m)                                       | 12                                                            | 10                    | 12                       | 12                      | 10                   | 12.5                 |  |
| Rated Rotary speed<br>(r/min)                              | 2500                                                          | 3000                  | 2500                     | 3000                    | 2500                 | 2500                 |  |
| Maximum Rotary speed<br>(r/min)                            | 3000                                                          | 3300                  | 3000                     | 3300                    | 3000                 | 3000                 |  |
| Moment of Inertia<br>(kg·m <sup>2</sup> )                  | 0.68×10 <sup>-3</sup>                                         | 0.68×10 <sup>-3</sup> | 0.95×10 <sup>-3</sup>    | 0.95×10 <sup>-3</sup>   | 1.1×10 <sup>-3</sup> | 1.1×10 <sup>-3</sup> |  |
| Weight (kg)                                                | 6.1                                                           | 6.1                   | 7.9                      | 7.9                     | 6.5                  | 6.5                  |  |
| Weight of motor with<br>electricity-breaking<br>brake (kg) | 7.7                                                           | 7.7                   | 9.5                      | 9.5                     | 8.1                  | 8.1                  |  |
| Insulation Grade                                           |                                                               |                       | B (GB 75                 | 55-2008)                |                      |                      |  |
| Oscillation Grade                                          | R (GB 10068-2008)                                             |                       |                          |                         |                      |                      |  |
| Protection Grade                                           | IP65 (GB/T4942.1-2006)                                        |                       |                          |                         |                      |                      |  |
| Installation Type                                          | IMB5 (Flange Installation) (GB/T 997-2008 / IEC 60034-7:2001) |                       |                          |                         |                      |                      |  |
| Character of Service                                       | S1 (Continuous Duty) (GB 755-2008)                            |                       |                          |                         |                      |                      |  |
| Adaptive Encoder                                           | Increment-t                                                   | ype 2500 p/r          | ,5000 p/r etc<br>or mult | ,absolute er<br>i-coil。 | ncoder17bit s        | ingle-circuit        |  |

Table 1-2 Principle Parameters of 110SJT Series, 130SJT Series Motor

Table 1-2 Principle Parameters of 110SJT Series, 130SJT Series Motor (continue)

| Model<br>Project     | 130SJT-M<br>060D(A□) | 130SJT-M<br>075D(A□) | 130SJT-M<br>100B(A⊡) | 130SJT-M<br>100D(A□) | 130SJT-M<br>150B(A⊡) | 130SJT-M<br>150D(A□) |  |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|
| Rated Voltage (kW)   | 1.5                  | 1.88                 | 1.5                  | 2.5                  | 2.3                  | 3.9                  |  |
| Pole-Pairs           | 4                    |                      |                      |                      |                      |                      |  |
| Rated Current (A)    | 6                    | 7.5                  | 6                    | 10                   | 8.5                  | 14.5                 |  |
| Zero-speed Torque    | 6                    | 7.5                  | 10                   | 10                   | 15                   | 15                   |  |
| Rated Torque (N·m)   | 6                    | 7.5                  | 10                   | 10                   | 15                   | 15                   |  |
| Maximum Torque (N·m) | 18                   | 20                   | 25                   | 25                   | 30                   | 30                   |  |



### DAT Series AC Servo Drive Unit User Manual

| Rated Rotary speed<br>(r/min)         | 2500                                                                          | 2500                  | 1500      | 2500                  | 1500     | 2500     |  |
|---------------------------------------|-------------------------------------------------------------------------------|-----------------------|-----------|-----------------------|----------|----------|--|
| Maximum Rotary speed<br>(r/min)       | 3000                                                                          | 3000                  | 2000      | 3000                  | 2000     | 3000     |  |
| Moment of Inertia(kg·m <sup>2</sup> ) | 1.33×10 <sup>-3</sup>                                                         | 1.85×10 <sup>-3</sup> | 2.42×10⁻³ | 2.42×10 <sup>-3</sup> | 3.1×10⁻³ | 3.6×10⁻³ |  |
| Weight (kg)                           | 7.2                                                                           | 8.1                   | 9.6       | 9.7                   | 11.9     | 12.7     |  |
| Weight of motor with                  |                                                                               |                       |           |                       |          |          |  |
| electricity-breaking brake            | 10.1                                                                          | 11                    | 12.5      | 12.6                  | 14.8     | 15.6     |  |
| ( <b>kg</b> )                         |                                                                               |                       |           |                       |          |          |  |
| Insulation Grade                      |                                                                               |                       | B (GB 7   | 55-2008)              |          |          |  |
| Oscillation Grade                     |                                                                               |                       | R (GB 10  | 068-2008)             |          |          |  |
| Protection Grade                      | IP65 (GB/T4942.1-2006)                                                        |                       |           |                       |          |          |  |
| Installation Type                     | IMB5 (Flange Installation) (GB/T 997-2008 / IEC 60034-7:2001)                 |                       |           |                       |          |          |  |
| Character of Service                  | S1 (Continuous Duty) (GB 755-2008)                                            |                       |           |                       |          |          |  |
| Adaptive Encoder                      | Increment-type 2500 p/r,5000 p/r etc, absolute encoder17bit single-circuit or |                       |           |                       |          |          |  |
|                                       | muiti-COII                                                                    |                       |           |                       |          |          |  |

Table 1-3 Principle Parameters of 175SJT Series Motor

| Model                                  | 175SJT-M                                                      | 175SJT-M                                                    | 175SJT-M             | 175SJT-M             | 175SJT-M              | 175SJT-M              |  |  |
|----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|----------------------|----------------------|-----------------------|-----------------------|--|--|
| Project                                | 180B(A□)                                                      | 180D(A□)                                                    | 220B(A□)             | 220D(A□)             | 300B(A□)              | 300D(A□)              |  |  |
| Rated Voltage (kW)                     | 2.8                                                           | 3.8                                                         | 3.5                  | 4.5                  | 3.8                   | 6                     |  |  |
| Pole-Pairs                             | 3                                                             |                                                             |                      |                      |                       |                       |  |  |
| Rated Current (A)                      | 15                                                            | 16.5                                                        | 17.5                 | 19                   | 19                    | 27.5                  |  |  |
| Zero-speed Torque (N·m)                | 18                                                            | 18                                                          | 22                   | 22                   | 30                    | 30                    |  |  |
| Rated Torque (N·m)                     | 18                                                            | 14.5                                                        | 22                   | 17.6                 | 24                    | 24                    |  |  |
| Maximum Torque (N·m)                   | 36                                                            | 29                                                          | 44                   | 35.2                 | 48                    | 48                    |  |  |
| Rated Rotary speed (r/min)             | 1500                                                          | 2500                                                        | 1500                 | 2500                 | 1500                  | 2500                  |  |  |
| Maximum Rotary speed<br>(r/min)        | 2000                                                          | 3000                                                        | 2000                 | 3000                 | 2000                  | 3000                  |  |  |
| Moment of Inertia (kg·m <sup>2</sup> ) | 6.5×10 <sup>-3</sup>                                          | 6.5×10 <sup>-3</sup>                                        | 9.0×10 <sup>-3</sup> | 9.0×10 <sup>-3</sup> | 11.2×10 <sup>-3</sup> | 11.2×10 <sup>-3</sup> |  |  |
| Weight (kg)                            | 22.8                                                          | 22.9                                                        | 28.9                 | 29.2                 | 34.3                  | 34.4                  |  |  |
| Weight of motor with                   |                                                               |                                                             |                      |                      |                       |                       |  |  |
| electricity-breaking brake             | 28.4                                                          | 28.5                                                        | 34.5                 | 36.8                 | 42                    | 42.1                  |  |  |
| ( <b>kg</b> )                          |                                                               |                                                             |                      |                      |                       |                       |  |  |
| Insulation Grade                       | F (GB 755-2008)                                               |                                                             |                      |                      |                       |                       |  |  |
| Oscillation Grade                      | R (GB 10068-2008)                                             |                                                             |                      |                      |                       |                       |  |  |
| Protection Grade                       | IP65 (GB/T4942.1-2006)                                        |                                                             |                      |                      |                       |                       |  |  |
| Installation Type                      | IMB5 (Flange Installation) (GB/T 997-2008 / IEC 60034-7:2001) |                                                             |                      |                      |                       |                       |  |  |
| Character of Service                   | S1 (Continuous Duty) (GB 755-2008)                            |                                                             |                      |                      |                       |                       |  |  |
| Adaptive Encoder                       | Increm                                                        | Increment-type 2500 p/r,5000 p/r etc, absolute encoder17bit |                      |                      |                       |                       |  |  |

#### **Mechanical Properties of Servo Motor**



## **1.3.2** Technical Specification of Servo Unit

| Sonvo unit model        | DAT2030                                                                  | DAT2050              | DAT2075                           | DAT2100    |  |  |  |
|-------------------------|--------------------------------------------------------------------------|----------------------|-----------------------------------|------------|--|--|--|
| Servo unit moder        | DAT2030C                                                                 | DAT2050C             | DAT2075C                          | DAT2100C   |  |  |  |
| Rated current of        |                                                                          |                      |                                   |            |  |  |  |
| adaptive servo current  | <6                                                                       | 6~10.5               | 11~21                             | 22~28      |  |  |  |
| (A)                     |                                                                          |                      |                                   |            |  |  |  |
| Dimension (mm)          |                                                                          |                      |                                   |            |  |  |  |
| (width*height*depth)    | 263×115×197 300×105×240                                                  |                      |                                   |            |  |  |  |
| Main power              | 3-phase AC (0.85~1.1) ×220 V, 50Hz/60Hz                                  |                      |                                   |            |  |  |  |
| speed regulation ratio  | 5000: 1                                                                  |                      |                                   |            |  |  |  |
| Speed fluctuation ratio | DAT2000 adaptive to 5000p/r increment encoder, <0.03%;                   |                      |                                   |            |  |  |  |
|                         | DAT2000C adaptive to 17bit absolute encoder, <0.01%;                     |                      |                                   |            |  |  |  |
| Speed frequency         | >3001                                                                    |                      |                                   |            |  |  |  |
| response                | ≤300⊓Z                                                                   |                      |                                   |            |  |  |  |
|                         | DAT2000 adaptive to 2500p/rspeed regulation ratio, Position error:       |                      |                                   |            |  |  |  |
|                         | ±0.036°                                                                  |                      |                                   |            |  |  |  |
| Position accuracy       | DAT2000 adaptive to 5000p/rspeed regulation ratio, Position error:       |                      |                                   |            |  |  |  |
|                         | ±0.018°                                                                  |                      |                                   |            |  |  |  |
|                         | DAT2000C adaptive to 17bit absolute encoder, Position error: ±0.005°     |                      |                                   |            |  |  |  |
| Work mode               | As manual operation, jog, internal speed, external speed, position, zero |                      |                                   |            |  |  |  |
|                         | setting etc.                                                             |                      |                                   |            |  |  |  |
| Internal speed pattern  | Servo motor operates at the 4-stage speed set in accordance with         |                      |                                   |            |  |  |  |
|                         | parameters and selected by input signals.                                |                      |                                   |            |  |  |  |
| External speed pattern  | Servo motor op                                                           | perated at the speed | corresponding to                  | VCMD input |  |  |  |
| Position pattern        | (-10V                                                                    | '~+10V or 0V~+10\    | <ol> <li>analog voltag</li> </ol> | ge).       |  |  |  |

|                                                         | Rotary angle of servo motor is controlled according to the pulse quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                         | of position command and the rotary speed determined by the pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                         | frequency of position command.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                         | Position command mode: pulse plus direction, CCW pulse/CW pulse,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                         | A/B two phase orthogonal pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                         | Maximum pulse frequency: 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                         | Command pulse frequency multiplication ratio and frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                         | demultiplication: $1 \sim 32767$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                         | Position command electric gear ratio $\frac{1}{50}$ $\sim$ 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                         | With DAT2000 standard adaptive increment type encoder as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                         | position feedback input, A/B/Z/U/V/W differential signal, encoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                         | resolution ratio: 2500 pixels or 5000 pixels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Position feedback input                                 | With DAT2000C standard adaptive absolute encoder as the position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                         | feedback input, i.e. 17bit absolute encoder, 12bit circles of power-down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                         | memory。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                         | Carry out frequency division processing to the pulse data from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                         | electromotor encoder (PG or pulse generator) in drive unit and output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| position feedback                                       | them to upper computer through CN1 in accordance with the preset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| output                                                  | pulse number so as to realize function such as the positional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                         | closed-loop control of upper computer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Communications bus                                      | GSKLink Bus (V1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                         | 10 input points as servo enabling alarming elimination CCW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                         | prohibition CW prohibition Zero-speed clamping internal speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Input signal                                            | ontion internal speed ontion 2 CCW torque limitation CW torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                         | limitation general input etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                         | limitation, general input etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Output signal                                           | limitation, general input etc.<br>7 output points as S-RDY, servo alarming, position arrival/speed arrival,<br>band-type brake release zero-speed output Z pulse(encoder zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Output signal                                           | limitation, general input etc.<br>7 output points as S-RDY, servo alarming, position arrival/speed arrival,<br>band-type brake release, zero-speed output, Z pulse(encoder zero<br>point), general output, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Output signal                                           | limitation, general input etc.<br>7 output points as S-RDY, servo alarming, position arrival/speed arrival,<br>band-type brake release, zero-speed output, Z pulse(encoder zero<br>point), general output, etc.<br>With protection functions as overvoltage, undervoltage, overcurrent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Output signal                                           | limitation, general input etc.<br>7 output points as S-RDY, servo alarming, position arrival/speed arrival,<br>band-type brake release, zero-speed output, Z pulse(encoder zero<br>point), general output, etc.<br>With protection functions as overvoltage, undervoltage, overcurrent,<br>overload, overspeed, position deviation, drive abnormality, encoder                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Output signal<br>Protection function                    | <ul> <li>limitation, general input etc.</li> <li>7 output points as S-RDY, servo alarming, position arrival/speed arrival, band-type brake release, zero-speed output, Z pulse(encoder zero point), general output, etc.</li> <li>With protection functions as overvoltage, undervoltage, overcurrent, overload, overspeed, position deviation, drive abnormality, encoder abnormality, etc.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Output signal<br>Protection function                    | <ul> <li>limitation, general input etc.</li> <li>7 output points as S-RDY, servo alarming, position arrival/speed arrival, band-type brake release, zero-speed output, Z pulse(encoder zero point), general output, etc.</li> <li>With protection functions as overvoltage, undervoltage, overcurrent, overload, overspeed, position deviation, drive abnormality, encoder abnormality, etc.</li> <li>4 buttons, manual operation, jog as well as parameter revision, setting,</li> </ul>                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Output signal<br>Protection function                    | <ul> <li>limitation, general input etc.</li> <li>7 output points as S-RDY, servo alarming, position arrival/speed arrival, band-type brake release, zero-speed output, Z pulse(encoder zero point), general output, etc.</li> <li>With protection functions as overvoltage, undervoltage, overcurrent, overload, overspeed, position deviation, drive abnormality, encoder abnormality, etc.</li> <li>4 buttons, manual operation, jog as well as parameter revision, setting, writing-in and back-up are available.</li> </ul>                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Output signal Protection function Operation and display | <ul> <li>limitation, general input etc.</li> <li>7 output points as S-RDY, servo alarming, position arrival/speed arrival, band-type brake release, zero-speed output, Z pulse(encoder zero point), general output, etc.</li> <li>With protection functions as overvoltage, undervoltage, overcurrent, overload, overspeed, position deviation, drive abnormality, encoder abnormality, etc.</li> <li>4 buttons, manual operation, jog as well as parameter revision, setting, writing-in and back-up are available.</li> <li>6 LEDs which display information as rotary speed, current position,</li> </ul>                                                                                                                                                                                                          |  |  |  |  |  |
| Output signal Protection function Operation and display | <ul> <li>limitation, general input etc.</li> <li>7 output points as S-RDY, servo alarming, position arrival/speed arrival, band-type brake release, zero-speed output, Z pulse(encoder zero point), general output, etc.</li> <li>With protection functions as overvoltage, undervoltage, overcurrent, overload, overspeed, position deviation, drive abnormality, encoder abnormality, etc.</li> <li>4 buttons, manual operation, jog as well as parameter revision, setting, writing-in and back-up are available.</li> <li>6 LEDs which display information as rotary speed, current position, pulse accumulation, position deviation, motor torque, motor current,</li> </ul>                                                                                                                                     |  |  |  |  |  |
| Output signal Protection function Operation and display | <ul> <li>limitation, general input etc.</li> <li>7 output points as S-RDY, servo alarming, position arrival/speed arrival, band-type brake release, zero-speed output, Z pulse(encoder zero point), general output, etc.</li> <li>With protection functions as overvoltage, undervoltage, overcurrent, overload, overspeed, position deviation, drive abnormality, encoder abnormality, etc.</li> <li>4 buttons, manual operation, jog as well as parameter revision, setting, writing-in and back-up are available.</li> <li>6 LEDs which display information as rotary speed, current position, pulse accumulation, position deviation, motor torque, motor current, absolute rotor position, input &amp; output signal states.</li> </ul>                                                                          |  |  |  |  |  |
| Output signal Protection function Operation and display | <ul> <li>limitation, general input etc.</li> <li>7 output points as S-RDY, servo alarming, position arrival/speed arrival, band-type brake release, zero-speed output, Z pulse(encoder zero point), general output, etc.</li> <li>With protection functions as overvoltage, undervoltage, overcurrent, overload, overspeed, position deviation, drive abnormality, encoder abnormality, etc.</li> <li>4 buttons, manual operation, jog as well as parameter revision, setting, writing-in and back-up are available.</li> <li>6 LEDs which display information as rotary speed, current position, pulse accumulation, position deviation, motor torque, motor current, absolute rotor position, input &amp; output signal states.</li> <li>Dynamic braking, built-in braking resistor (DAT2100 or DAT2100C</li> </ul> |  |  |  |  |  |



**CCW** indicates the main drive shaft of motor installation plane rotates counterclockwise when you see it from the shaft extension direction (CCW-Counter Clockwise). **CW** indicates the main drive shaft of motor installation plane rotates clockwise when you see it from the shaft extension direction (CW- Clockwise).

## 1.4 Order instruction

## 1.4.1 Order model example

Order model examples of adaptive SJT series servo motor are listed on the following chart:

|                               | Principle motor parameters |                |            |             |                  |
|-------------------------------|----------------------------|----------------|------------|-------------|------------------|
| Order model                   | Rated                      | Rated          | Zero-speed | Rated       | Encoder          |
|                               | Voltage                    | Current        | Torque     | speed       | LICOUEI          |
| DAT2030-05-80S IT-M024C       | 0.5kW                      | З ∆            | 2.4 N·m    | 2000r/min   | 2500p/r          |
|                               | 0.000                      | 077            | 2.4 14 11  | 20001/11/11 | Incremental type |
| DAT2030-08-80S.IT-M024F       | 0 75kW                     | 4 8 A          | 2.4 N·m    | 3000r/min   | 2500p/r          |
|                               | 0.70100                    | 4.077          | 2.414111   | 00001/11/11 | Incremental type |
| DAT2030-07-80S IT-M032C       | 0.66kW                     | 5 A            | 3.2 N·m    | 2000r/min   | 2500p/r          |
| B/(12000 01 00001 M0020       | 0.00100                    | 077            | 0.2 11 11  | 20001/11/11 | Incremental type |
| DAT2050-10-80S IT-M032E       | 1 0kW                      | 624            | 3.2 N·m    | 3000r/min   | 2500p/r          |
|                               | 1.000                      | 0.277          | 0.2 11 11  | 00001/11/11 | Incremental type |
| DAT2030-10-110SJT-M040D(A2)   | 1 0kW                      | 4 5 4          | 4N-m       | 2500r/min   | 5000p/r          |
| DAT2030-10-110SJT-MZ040D(A2)  | 1.000                      | ч. <b>0</b> /( |            | 20001/11/11 | Incremental type |
| DAT2050-15-110SJT-M060D(A2)   | 1 5k\W                     | 74             | 6N·m       | 2500r/min   | 5000p/r          |
| DAT2050-15-110SJT-MZ060D(A2)  | 1.000                      |                | on m       | 20001/11/11 | Incremental type |
| DAT2030-10-130SJT-M040D(A2)   | 1 0kW                      | 44             | 4N⋅m       | 2500r/min   | 5000p/r          |
| DAT2030-10-130SJT-MZ040D(A2)  | 1.000                      | -77            |            | 20001/11/11 | Incremental type |
| DAT2030-13-130SJT-M050D(A2)   | 1.3kW                      | 54             | 5N·m       | 2500r/min   | 5000p/r          |
| DAT2030-13-130SJT-MZ050D(A2)  | 1.000                      | 0/1            | UN III     | 20001/11/11 | Incremental type |
| DAT2050-15-130S.IT-M060D (A2) | 1.5kW                      | 6 A            | 6 N⋅m      | 2500r/min   | 5000p/r          |
|                               | 1.0.00                     | 077            | 0.11       | 20001/11111 | Incremental type |
| DAT2050-19B-130SJT-M075D (A2) | 1 9kW                      | 75A            | 7.5 N·m    | 2500r/min   | 5000p/r          |
|                               | 1.000                      | 1.077          | 7.0111     | 20001/11/11 | Incremental type |
| DAT2050-15-130SJT-M100B (A2)  | 1.5k\M                     | 6 A            | 10 N·m     | 2500r/min   | 5000p/r          |
|                               |                            | 0//            |            | 20001/1111  | Incremental type |
| DAT2050-25B-130SJT-M100D (A2) | 2 5kW                      | 10 A           | 10 N·m     | 2500r/min   | 5000p/r          |
|                               | 2.000                      | 1077           |            | 20001/1111  | Incremental type |
| DAT2050-23B-130SJT-M150B (A2) | 2 3kW                      | 85A            | 15 N·m     | 1500r/min   | 5000p/r          |
|                               |                            | 0.071          |            |             | Incremental type |
| DAT2075-39E-130SJT-M150D (A2) | 3 9kW                      | 14 5 A         | 15 N·m     | 2500r/min   | 5000p/r          |
|                               | 0.000                      | 11.077         |            | 20001/1111  | Incremental type |
| DAT2075-28F-175SJT-M180B (A2) | 2 8kW                      | 15 A           | 18 N·m     | 1500r/min   | 5000p/r          |
|                               |                            |                |            |             | Incremental type |
| DAT2075-38F-175SJT-M180D (A2) | 3 8kW                      | 16 5 A         | 18 N·m     | 2500r/min   | 5000p/r          |
|                               | 0.0111                     |                |            |             | Incremental type |
| DAT2075-35-175SJT-M220B (A2)  | 3 5kW                      | 17 5 A         | 22 N·m     | 1500r/min   | 5000p/r          |
|                               | 0.0100                     |                |            |             | Incremental type |
| DAT2075-45-175SJT-M220D (A2)  | 4.5kW                      | 19 A           | 22 N·m     | 2500r/min   | 5000p/r          |
|                               | -T.UKVV                    |                |            | 23001/11111 | Incremental type |

GER CNC

### DAT Series AC Servo Drive Unit User Manual

|                                 | Principle motor parameters |         |            |             |                  |
|---------------------------------|----------------------------|---------|------------|-------------|------------------|
| Order model                     | Rated                      | Rated   | Zero-speed | Rated       | Encoder          |
|                                 | Voltage                    | Current | Torque     | speed       | Encoder          |
| DAT2075-38-175S IT-M300B (A2)   | 3 8k/M                     | 10 A    | 30 Nim     | 1500r/min   | 5000p/r          |
|                                 | 5.0KVV                     | 197     | 30 11 11   | 10001/11111 | Incremental type |
| DAT2100-60-175S.IT-M300D (A2)   | 6 0kW                      | 27 5 A  | 30 N·m     | 2500r/min   | 5000p/r          |
|                                 | 0.000                      | 21.07   | 50 N III   | 20001/11/11 | Incremental type |
| DAT2030C-10-110SJT-M040D(A4I)   | 1 0kW                      | 4 5 4   | 4N-m       | 2500r/min   | 17bit multi-coil |
| DAT2030C-10-110SJT-MZ040D(A4I)  | 1.000                      | 4.0/1   |            | 20001/11/11 | absolute type    |
| DAT2050C-15-110SJT-M060D(A4I)   | 1.5kW                      | 7A      | 6N·m       | 2500r/min   | 17bit multi-coil |
| DAT2050C-15-110SJT-MZ060D(A4I)  | 1.000                      |         |            | 20001/1111  | absolute type    |
| DAT2030C-10-130SJT-M040D(A4I)   | 1 0kW                      | 4A      | 4N·m       | 2500r/min   | 17bit Multi-coil |
| DAT2030C-10-130SJT-MZ040D(A4I)  | 1.000                      |         |            | 20001/1111  | absolute type    |
| DAT2030C-13-130SJT-M050D(A4I)   | 1 3kW                      | 5A      | 5N·m       | 2500r/min   | 17bit Multi-coil |
| DAT2030C-13-130SJT-MZ050D(A4I)  | 1.000                      | 0/1     |            | 20001/1111  | absolute type    |
| DAT2050C-15-130SJT-M060D(A4I)   | 1 5kW                      | 6 A     | 6 N·m      | 2500r/min   | 17bit Multi-coil |
|                                 | 1.0.01                     | οΛ      | 01111      | 20001/1111  | absolute type    |
| DAT2050C-19B-130S.IT-M075D(A4I) | 1 9kW                      | 75A     | 7 5 N·m    | 2500r/min   | 17bit Multi-coil |
|                                 | 1.000                      | 1.077   | 7.011      | 20001/1111  | absolute type    |
| DAT2050C-15-130SJT-M100B(A4I)   | 1 5kW                      | 6 A     | 10 N·m     | 2500r/min   | 17bit Multi-coil |
|                                 |                            | 077     |            |             | absolute type    |
| DAT2050C-25B-130SJT-M100D(A4I)  | 2 5kW                      | 10 A    | 10 N·m     | 2500r/min   | 17bit Multi-coil |
|                                 | 2.0.01                     | 1071    |            |             | absolute type    |
| DAT2050C-23B-130SJT-M150B(A4I)  | 2.3kW                      | 8.5 A   | 15 N·m     | 1500r/min   | 17bit Multi-coil |
|                                 |                            |         |            |             | absolute type    |
| DAT2075C-39E-130SJT-M150D(A4I)  | 3.9kW                      | 14.5 A  | 15 N·m     | 2500r/min   | 17bit Multi-coil |
| ()                              |                            |         |            |             | absolute type    |
| DAT2075C-28E-175SJT-M180B(A4I)  | 2.8kW                      | 15 A    | 18 N·m     | 1500r/min   | 17bit Multi-coil |
|                                 | -                          | -       | _          |             | absolute type    |
| DAT2075C-38E-175SJT-M180D(A4I)  | 3.8kW                      | 16.5 A  | 18 N·m     | 2500r/min   | 17bitMulti-coil  |
|                                 |                            |         |            |             | absolute type    |
| DAT2075C-35-175SJT-M220B(A4I)   | 3.5kW                      | 17.5 A  | 22 N·m     | 1500r/min   | 17bit Multi-coil |
|                                 |                            | -       |            |             | absolute type    |
| DAT2075C-45-175SJT-M220D(A4I)   | 4.5kW                      | 19 A    | 22 N·m     | 2500r/min   | 17bit Multi-coil |
|                                 | -                          | -       |            |             | absolute type    |
| DAT2075C-38-175SJT-M300B(A4I)   | 3.8kW                      | 19 A    | 30 N∙m     | 1500r/min   | 17bit Multi-coil |
|                                 | 0.0.01                     |         |            |             | absolute type    |
| DAT2100C-60-175SJT-M300D(A4I)   | 6.0kW                      | 27.5 A  | 30 N∙m     | 2500r/min   | 17bit Multi-coil |
|                                 |                            |         |            |             | absolute type    |

### Attentions

1. When ordering motors, please select models according to the adaptive model lists offered by GSK and write down your confirmed model on the order so as to set the corresponding parameters of factory servo units.

2. Please contact our technician in time if you want to allocate motors on your own, otherwise we can not guarantee the AC servo unit drives the motor normally.

### 1.4.2 Standard Products Accessories

Following list shows the standard products accessories which are allocated on the basis that no special requirement asked by users. If users need other accessories not included in the list, please contact salesperson or consult our technicians for further information.

#### ■ DAT2000 series servo unit standard accessories list(allocated per each servo unit)

| Order<br>Type | Accessories Name                           | Quantity | Description           | Note              |
|---------------|--------------------------------------------|----------|-----------------------|-------------------|
|               | 44DB cellular type plug and<br>plastic box | 1set     | CN1 connection plug   |                   |
| servo unit    | motor encoder wire                         | 1strip   | standard length 3M    |                   |
| and servo     | motor wire                                 | 1strip   | standard length 3M    | welded cable wire |
| motor kit     | "Instruction Manual of DAT                 | 1 PCS    | Accompanying          | are available     |
|               | Series AC Servo Drive Unit"                |          | technical document    |                   |
|               | RXLG-1500W-10ΩJ braking                    | 1 PCS    | Only DAT2100 adaptive |                   |
|               | resistor                                   |          | to this accessory     |                   |
| Servo unit    | 25DB pin-type plug and plastic             | 1 set    | CN2 connection plug   | CN1-CNC           |
| and CNC       | box                                        |          |                       | signals.          |
| Kit/without   | "Instruction Manual of DAT                 | 1PC      | Accompanying          | connection wires  |
| servo         | Series AC Servo Drive Unit                 |          | technical document    | are available     |
| motor)        | RXLG-1500W-10ΩJ braking                    | 1PC      | Only DAT2100 adaptive | along with CNC    |
| motory        | resistor                                   |          | to this accessory     | products          |
|               | motor encoder wire                         | 1strip   | standard length 3M    |                   |
| Servo unit    | motor wire                                 | 1 strip  | standard length 3M    | CN1-CNC signals   |
|               | "Instruction Manual of DAT                 | 1PC      | Accompanying          | connection wires  |
| motor and     | Series AC Servo Drive Unit                 |          | technical document    | are available     |
| CNC Kit       | RXLG-1500W-10ΩJ braking                    | 1PC      | Only DAT2100C         | along with CNC    |
|               | resistor                                   |          | adaptive to this      | products          |
|               |                                            |          | accessory             |                   |

Note: Please mark on the order if you need other length of wire except for the standard 3M.

### ■ DAT2000C Series Servo Unit Standard Accessories List(allocated per each servo unit)

| Order<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Accessory Name                                                                                                                  | Quantity             | Description                                                               | Note                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Servo unit<br>and CNC<br>Kit(without<br>servo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26P high density plug and<br>plastic box<br>"Instruction Manual of DAT<br>Series AC Servo Drive Unit<br>RXLG-1500W-10ΩJ braking | 1set<br>1 pc<br>1 pc | CN2 connection plug<br>Accompanied<br>technical document<br>Only DAT2100C | CN1-CNC,<br>GSKLinK signals<br>connection wire and<br>terminal socket are<br>available along with |
| motor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | resistor                                                                                                                        |                      | adaptive to this<br>accessory                                             | CNC products                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | motor encoder wire                                                                                                              | 1strip               | standard length 3M                                                        | CN1-CNC                                                                                           |
| servo unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | motor wire                                                                                                                      | 1 strip              | standard length 3M                                                        | GSKLinK signals                                                                                   |
| motor and CNC Kit (Instruction)<br>(Servo Series AC Series | "Instruction Manual of DAT<br>Series AC Servo Drive Unit                                                                        | 1 pc                 | c Accompanied control technical document                                  | connection wire and                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RXLG-1500W-10ΩJ braking resistor                                                                                                | 1 pc                 | Only DAT2100C<br>adaptive to this<br>accessory                            | available along with CNC products                                                                 |

#### DAT Series Selective Accessories

| Accessory Name                      | Description                                                            | Note                                       |
|-------------------------------------|------------------------------------------------------------------------|--------------------------------------------|
| Braking resistor                    | Power:300W,resistivity: 30Ω; DAT2030                                   | Refer to                                   |
| RXLG-300W-30ΩJ                      | or DAT2030C external selective                                         | Appendix B1                                |
| Braking resistor                    | Power 500W,resistivity: 22Ω; DAT2050                                   | "Outlay Braking                            |
| RXLG-500W-22ΩJ                      | or DAT2050C external selective                                         | Resistor" for                              |
| Braking resistor<br>RXLG-1000W-15ΩJ | Power 1000W,resistivity:15Ω; DAT2075<br>or DAT2075C external selective | detailed the<br>installation<br>dimension. |
| 4*1.5mm2 BVVB                       | 4-core wire, wire diameter:1.5mm <sup>2</sup> ; DAT2030                |                                            |
|                                     | or DAT2030C for motor wire                                             |                                            |
| 4*2 5mm <sup>2</sup> B\/\/B         | 4-core wire, wire diameter:2.5mm <sup>2</sup> ; DAT2050                |                                            |
| 4 2.5000 0000                       | or DAT2050C for motor wire                                             |                                            |
|                                     | 4-core wire, wire diameter:4.0mm <sup>2</sup> ;                        |                                            |
| 4*4.0mm <sup>2</sup> BVVB           | DAT2075,DAT2075C,DAT2100,DAT2100C for                                  |                                            |
|                                     | motor wire                                                             |                                            |
| 10-core twinning<br>shielding wire  | matching motor encoder wire                                            |                                            |

## **CHAPTER 2** INSTALLATION

### 2.1 Servo Motor

## 2.1.1 Mounting Dimension of the Servo Motor

➤ For external dimensions and installation of 80SJT series motor, see figure 2-1, table 2-1.



| т |   | h | ما | 2          | .1  |
|---|---|---|----|------------|-----|
| 1 | a | υ | ie | <b>Z</b> - | · I |

| Туре             | D(mm)                           | N(mm)                    | LB(mm) | L(mm) |
|------------------|---------------------------------|--------------------------|--------|-------|
| 80SJT—M024C (A□) | <i>φ</i> 19 <sup>0</sup> -0.013 | $\varphi 70^{0}_{-0.03}$ | 171    | 206   |
| 80SJT—M024E(A□)  | <i>φ</i> 19 <sup>0</sup> -0.013 | $\varphi 70^{0}_{-0.03}$ | 171    | 206   |
| 80SJT—M032C(A□)  | <i>φ</i> 19 <sup>0</sup> -0.013 | $\varphi 70^{0}_{-0.03}$ | 189    | 224   |
| 80SJT—M032E(A□)  | <i>φ</i> 19 <sup>0</sup> -0.013 | $\varphi 70^{0}_{-0.03}$ | 189    | 224   |

> For external dimensions of 110SJT series motor, see figure 2-2, table 2-2.

**GGSK** CNC



Fig. 2-2 Table 2-2

| Туре                                                                                           | D(mm)                           | N(mm)                   | LB(mm)    | L(mm)     |
|------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|-----------|-----------|
| 110SJT—M040D(A□)                                                                               | <i>φ</i> 19 <sup>0</sup> -0.013 | φ95 <sup>0</sup> -0.035 | 186 (237) | 241 (292) |
| 110SJT—M040E(A□)                                                                               | <b>φ19<sup>0</sup></b> -0.013   | φ95 <sup>0</sup> -0.035 | 186 (237) | 241 (292) |
| 110SJT—M060D(A□)                                                                               | <i>φ</i> 19 <sup>0</sup> -0.013 | φ95 <sup>0</sup> -0.035 | 212 (263) | 267 (318) |
| 110SJT—M060E(A□)                                                                               | <i>φ</i> 19 <sup>0</sup> -0.013 | φ95 <sup>0</sup> -0.035 | 212 (263) | 267 (318) |
| Note: LB, L values in the brackets are the length of corresponding motor that with safe brake. |                                 |                         |           |           |

> For external dimensions of 130SJT series motor, see figure 2-3, table 2-3.



| Tabl | le | 2- | .3 |
|------|----|----|----|

| Туре                                                                                           | D(mm)                           | N(mm)                                | LB(mm)    | L(mm)     |
|------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|-----------|-----------|
| 130SJT—M040D(A□)                                                                               | φ22 <sup>0</sup> -0.013         | φ110 <sup>0</sup> - <sub>0.035</sub> | 168 (227) | 225 (284) |
| 130SJT—M050D(A□)                                                                               | <i>φ</i> 22 <sup>0</sup> -0.013 | <i>φ</i> 110 <sup>0</sup> -0.035     | 168 (227) | 225 (284) |
| 130SJT—M060D(A□)                                                                               | $\varphi 22^{0}_{-0.013}$       | <i>φ</i> 110 <sup>0</sup> -0.035     | 176 (235) | 233 (292) |
| 130SJT—M075D(A□)                                                                               | φ22 <sup>0</sup> -0.013         | φ110 <sup>0</sup> - <sub>0.035</sub> | 188 (247) | 245 (304) |
| 130SJT—M100B(A□)                                                                               | $\varphi 22^{0}_{-0.013}$       | <i>φ</i> 110 <sup>0</sup> -0.035     | 208 (267) | 265 (324) |
| 130SJT—M100D(A□)                                                                               | <i>φ</i> 22 <sup>0</sup> -0.013 | <i>φ</i> 110 <sup>0</sup> -0.035     | 208 (267) | 265 (324) |
| 130SJT—M150B(A□)                                                                               | <i>φ</i> 22 <sup>0</sup> -0.013 | <i>φ</i> 110 <sup>0</sup> -0.035     | 238 (297) | 295 (354) |
| 130SJT—M150D(A□)                                                                               | <i>φ</i> 22 <sup>0</sup> -0.013 | <i>φ</i> 110 <sup>0</sup> -0.035     | 248 (307) | 305 (364) |
| Note: LB, L values in the brackets are the length of corresponding motor that with safe brake. |                                 |                                      |           |           |

> For external dimensions of 175SJT series motor, see figure 2-4, table 2-4.



Fig. 2-4 Table 2-4

| Туре                                                                                           | D(mm)                  | N(mm)                              | LB(mm)    | L(mm)     |
|------------------------------------------------------------------------------------------------|------------------------|------------------------------------|-----------|-----------|
| 175SJT—M150D(A□)                                                                               | $\varphi 35_0^{+0.01}$ | <i>φ</i> 114.3 <sup>0</sup> -0.025 | 224 (291) | 303 (370) |
| 175SJT—M180B(A□)                                                                               | $\varphi 35_0^{+0.01}$ | φ114.3 <sup>0</sup> -0.025         | 244 (311) | 323 (390) |
| 175SJT—M180D(A□)                                                                               | $\varphi 35_0^{+0.01}$ | <i>φ</i> 114.3 <sup>0</sup> -0.025 | 244 (311) | 323 (390) |
| 175SJT—M220B(A□)                                                                               | $\varphi 35_0^{+0.01}$ | <i>φ</i> 114.3 <sup>0</sup> -0.025 | 279 (346) | 358 (425) |
| 175SJT—M220D(A□)                                                                               | $\varphi 35_0^{+0.01}$ | <i>φ</i> 114.3 <sup>0</sup> -0.025 | 279 (346) | 358 (425) |
| 175SJT—M300B(A□)                                                                               | $\varphi 35_0^{+0.01}$ | <i>φ</i> 114.3 <sup>0</sup> -0.025 | 309 (382) | 388 (461) |
| 175SJT—M300D(A□)                                                                               | $\varphi 35_0^{+0.01}$ | <i>φ</i> 114.3 <sup>0</sup> -0.025 | 309 (382) | 388 (461) |
| 175SJT—M380B(A□)                                                                               | $\varphi 35_0^{+0.01}$ | <i>φ</i> 114.3 <sup>0</sup> -0.025 | 359 (432) | 438 (561) |
| Note: LB, L values in the brackets are the length of corresponding motor that with safe brake. |                        |                                    |           |           |

### 2.1.2 Servo Motor Installation

Servo motor installation, storage and transportation environment

| Item                                   | Parameter and requirement                                                            |
|----------------------------------------|--------------------------------------------------------------------------------------|
| Operation temperature                  | 0°C∼40°C                                                                             |
| Storage and transportation temperature | -40℃~70℃                                                                             |
| Operation humidity                     | 30% $\sim$ 95% (no dewing)                                                           |
| Storage and transportation humidity    | ≤95% (40°C)                                                                          |
| Atmosphere environment                 | There is no corrosive or flammable gas, oil mist or dust etc. in the control cabinet |
| Altitude                               | Altitude of below 1000m                                                              |

## Attentions

1. When install the belt pulley, do not strike the motor or the motor axis to avoid damage to internal encoder. Spiral insert and pull out tools should be used for dismounting.

2. The servo motor can not bear axial and radial load. Spring coupling is recommended to connect the load.

3. Stop washer should be used to fix the motor to avoid motor loosening.

 The motor mounting position should be protected against water and oil. The cable will bring water and oil to the motor if it immerses in water and oil.
 Therefore, this situation should be prevented from happening.



### 2.2 Servo Unit

The installation environment of the servo motor has direct effect on its functions and service life. Please install it correctly under the instructions below.

### Attentions

- Prevent water and direct sunlight.
- Please put on electrical cabinet to prevent dust, corrosive gas, conductive and flammable materials.
  - The installation place should be well ventilated, moisture proof and dust proof.
  - Do not install it on the surface or near the flammable materials to prevent fire.
  - The mounting place should be facilitating maintenance and checking.

| ltem                                   | Parameter and requirement                   |
|----------------------------------------|---------------------------------------------|
| Operation temperature                  | 0°C∼40°C                                    |
| Storage and transportation temperature | -40℃~70℃                                    |
| Operation humidity                     | 30%~95% (no dewing)                         |
| Storage and transportation humidity    | ≤95% (40°C)                                 |
| Atmosphere environment                 | There is no corrosive or flammable gas, oil |
| Atmosphere environment                 | mist or dust etc. in the control cabinet    |
| Altitude                               | Altitude of below 1000m                     |
| Vibration                              | ≤0.6G(5.9m/s <sup>2</sup> )                 |
| Atmosphere pressure                    | 86kPa∼106kPa                                |

## 2.2.1 Installation Dimension







Fig. 2-6 DAT2075, DAT2075C, DAT2100, DAT2100C installation dimension (unit: mm)



### 2.2.2 Mounting Interval

DAT series servo unit adopts base-plate installation mode, install direction is perpendicular to the mounting surface. Put the front side of the servo unit forward, and top side upward to dissipate heat. Please leave space around it.



Fig. 2-7 DAT servo unit mounting interval

Fig. 2-8 shows intervals between servo units, more space should leave in actual installation to ensure well heat elimination.



<sup>2</sup> To prevent environment temperature continuously from being increased, ensure convection current flows to radiator of the servo unit in the electric cabinet.

## **Chapter 3 CONNECTION**

Please read the following notes carefully and follow it to get safe and smooth operations.





### 3.1 Connection of Peripherals

Servo unit must be equipped with some peripherals. Proper peripheral ensures the servo unit works stably. Otherwise, service life will be shortened and even the servo unit will be damaged.



Fig. 3-2 Connection of peripheral DAT2030, DAT2050

For circuit breaker, isolation transformer, AC wave filter, AC contactor selection, please refer to appendix B.



Fig. 3-3 Connection of peripheral DAT2030C, DAT2050C

For circuit breaker, isolation transformer, AC wave filter, AC contactor selection, please refer to appendix B.



#### DAT Series AC Servo Drive Unit User Manual



Fig. 3-4 Connection of peripheral DAT2075, DAT2100

For circuit breaker, isolation transformer, AC wave filter, AC contactor selection, please refer to appendix B.


Fig. 3-5 Connection of peripheral DAT2075C, DAT2100C

For circuit breaker, isolation transformer, AC wave filter, AC contactor selection, please refer to appendix B.

# 3.2 Terminal Connection of Main Circuit

### 3.2.1 Terminal Connection of Servo Unit





### Attentions

• B, B1 should be shorted when external braking resistor is not connected. B, B1 should be disconnected when external braking resistor is connected

• U, V, W, PE terminals of the motor cable provided by our company are marked, which should one-to-one

- correspondent to U, V, W, PE terminals of the servo unit. Otherwise, the motor will not work normally.
- The system must be earthed correctly, and its resistance must be less than  $10 \Omega$ .

The following circuit diagram is recommended for connection of KM1 control circuit in Fig. 3-5:



|             | R    | S                   | Т          | PE⊕                      | U                | V                   | W     | Ρ                  | B1                | В  |
|-------------|------|---------------------|------------|--------------------------|------------------|---------------------|-------|--------------------|-------------------|----|
| Current of  |      |                     | Protective |                          |                  |                     |       | Connection         |                   |    |
| the adapted | Inpu | t termir            | nal of     | around                   | Powe             | Power output and    |       | te                 | rminal            | of |
| motor       | Α    | C curre             | nt         | end                      | rower output end |                     | exter | nal, int           | ernal             |    |
|             | ena  |                     |            | bra                      | ke resi          | stor                |       |                    |                   |    |
| ≤6A         |      | 1.5 mm              | 2          | ≥1.5 mm <sup>2</sup>     |                  | 1.5 mm <sup>2</sup> | 2     | 1.5mm <sup>2</sup> |                   | 2  |
| 6A~10.5A    |      | 2.5 mm <sup>2</sup> | 2          | ≥2.5 mm <sup>2</sup>     |                  | 2.5 mm <sup>2</sup> | 2     | 2                  | 2.5 mm            | 2  |
| 11A~21A     |      | 4 mm <sup>2</sup>   |            | $\geq$ 4 mm <sup>2</sup> |                  | 4 mm <sup>2</sup>   |       |                    | 4 mm <sup>2</sup> |    |
| 22A~28A     |      | 4 mm <sup>2</sup>   |            | $\geq$ 4 mm <sup>2</sup> |                  | 4 mm <sup>2</sup>   |       |                    | 4 mm <sup>2</sup> |    |

Section selection of main circuit wiring:

For DAT2030 or DAT2030C, DAT2050 or DAT2050C terminal, its insulation covering is stripped off and the exposed copper wire is twisted according to the following figure. Press wiring (press terminal with special tools) with H2.5/18D type tubular terminal (Weidmuller Company). Insert terminal as the figure, and tighten up terminal screw.





For DAT2075 or DAT2075C, DAT2100 or DAT2100C terminal and DAT series PE terminal connections, insulation covering is stripped off and exposed copper wire is twisted according to the following figure. Press wiring (press terminal with special tools) with HRV 2—5S type round pre-insulation terminal. (Huxi Electric Apparatus co., Ltd), and tighten it up to the ground screw at the front of the shell.





### 3.2.2 Instructions for Servo Motor Interface



Corresponding relationship between pins of motor power socket and output terminal of the servo unit

| Pin No. of the motor power socket | 1  | 2 | 3 | 4 |
|-----------------------------------|----|---|---|---|
| Terminal tab the servo unit       | PE | U | V | W |



Power socket of the motor

Pins connection of safe brake socket



- Pin1, Pin 2 is connected to DC24V, and their positive and negative poles are not distinguished, pin 3 is earthed.
- For controlling of controlled contact KA, refer to section 6.2 :application of release signal of band-type brake.

For motor with different power is adapted to the safe brake with different power. When selecting 24V switch power supply, please refer to the following technical parameters of arrester brakes adapted to different motors.

| Seat No. of the motor | Rated<br>torque | Supply<br>voltage | Coil power of the brake at<br>20℃ (unit: W) | Release time<br>(s) |
|-----------------------|-----------------|-------------------|---------------------------------------------|---------------------|
| 110                   | 4               | 24V DC            | 20                                          | 0.037               |
| 130                   | 8               | 24V DC            | 25                                          | 0.042               |
| 175                   | 32              | 24V DC            | 40                                          | 0.135               |

> For connection of pins of encoder signal socket, please refer to section 3.4.3.

### 3.3 Connection of Control Signal

### 3.3.1 Definition of Pin CN1 of DAT Series Products

The control signal interface CN1 of DAT2000 series products is Pin 44 male, the connector for making control wire is Pin 44 female (the type is G3150-44FBNS1X1, provided by WIESON Company). See the following figure for the definition of the pins.



Figure 3-13 Pin CN1 of DAT2000



In the above figure, pins with the same name are connected and shorted in the inner circuit board.

Control signal interface CN1 of DAT2000C series products is high-density socket with 50 cores (type: MDR50-10250-55H3JL, provided by 3M company), which pin layout is as follows:



| Pin  | Name    | Meaning                                     | Reference      | Pin<br>No | Name  | Meaning                                | Reference |
|------|---------|---------------------------------------------|----------------|-----------|-------|----------------------------------------|-----------|
| 110. | PBO-    | Position                                    | Item           | 26        | P70-  | Position                               | liem      |
| 2    | PBO+    | feedback<br>output<br>signal A<br>pase      | 6.4            | 27        | PZO+  | feedback<br>output<br>signal Z<br>pase | 6.4       |
| 3    | PAO-    | Position                                    |                | 28        | GND   | digital ground                         |           |
| 4    | PAO+    | feedback<br>output<br>signal B<br>pase      | 6.4            | 29        | NC    |                                        |           |
| 5    | PULS-   | Position                                    |                | 30        | SIGN- | Input direction                        |           |
| 6    | PULS+   | command pulse<br>input                      | 3.3.3          | 31        | SIGN+ | of position command                    | 3.3.3     |
| 7    | SC2/INH | Speed<br>selection<br>2/pulse<br>prohibited | 5.2.2<br>6.5.4 | 32        | RIL   | CW torque<br>limit                     | 3.3.4     |
| 8    | SC1/CLE | Speed<br>selection 1/<br>pulse clearing     | 5.2.2<br>6.5.3 | 33        | FIL   | CCW torque<br>limit                    | 3.3.4     |
| 9    | NC      |                                             |                | 34        | ZSL   | Zero-speed<br>clamped                  | 6.6.3     |
| 10   | RSTP    | CW drive prohibited                         | 3.3.4          | 35        | GIN   | reserve                                |           |
| 11   | FSTP    | CCW drive prohibited                        | 3.3.4          | 36        | NC    |                                        |           |
| 12   | ALRS    | Alarm clearing                              | 3.3.4          | 37        | NC    |                                        |           |
| 13   | SON     | Enabling                                    | 3.3.4          | 38        | COM-  |                                        |           |
| 14   | NC      |                                             |                | 39        | COM+  | of control                             |           |
| 15   | COIN+   | Speed arrival<br>+/ position<br>arrival+    | 6.6.2<br>6.5.2 | 41        | сом+  | signal (15~<br>24VDC)                  |           |

Fig. 3-14 Pin CN1

#### Chapter 3 Connection

| 16 | SRDY- | Servo be<br>ready to | 3.3.5 | 40 | COIN- | Speed arrival<br>+/ position<br>arrival+ | 6.6.2<br>6.5.2 |
|----|-------|----------------------|-------|----|-------|------------------------------------------|----------------|
| 17 | SRDY+ | output               |       | 42 | HOLD- | Release                                  |                |
| 18 | NC    |                      |       | 43 | HOLD+ | signal of safe<br>brake output           | 6.2            |
| 19 | NC    |                      |       | 44 | NC    |                                          |                |
| 20 | ZSP-  | Motor                |       | 45 | NC    |                                          |                |
| 21 | ZSP+  | zero-speed<br>output | 3.3.5 | 46 | CZ-   | Zero-point<br>signal of                  | 225            |
| 22 | ALM-  | Alarm output         | 3.3.5 | 47 | CZ+   | encode<br>output                         | 3.3.5          |
| 23 | ALM+  |                      |       | 48 | 0VA   |                                          |                |
| 24 | VCMD+ | Simulated            |       | 49 | NC    |                                          |                |
| 25 | VCMD- | command<br>input     | 3.3.2 | 50 | NC    |                                          |                |

### 3.3.2 Input of Speed Command

VCMD+/ VCMD- are input terminals of speed command input, which receives max. 10V DC voltage signal, and its terminal input resistance is  $20K\Omega$ .



Note: The signal cable uses a shielded line, and the differential signal must use a twisted-pair line.



### 3.3.3 Input of Position Command

Position commands PULS+/PULS-, SIGN+/SIGN- can use differential drive method or use single-end drive method. See example as follows:

• Differential drive method



#### • Single-end drive method







Fig. 3-19 Wiring of PNP type single-end drive

 Differential drive method is recommended to use in order to avoid high interference; In differential drive mode, AM26LS31, MC3487 or similar RS422 drive chip are recommended.

Single-end drive method will decrease action frequency. Under the condition that the pulse input to circuit, drive current is 10 mA~15mA, external max. power voltage is limited to 25V, resistance R value is defined. Experiential data: VCC=24V, R=1.3k Ω ~ 2kΩ; VCC=12V, R=510 Ω ~ 820 Ω; VCC=5V, R=0 Ω

There are three kinds of position command input modes, which are set by parameter PA14, can be received. See the table bellow, and arrow represents the counting edge.

|                        | Reverse mode | e: PA15=0 |                        |
|------------------------|--------------|-----------|------------------------|
| Pulse command<br>mode  | CCW          | CW<br>CW  | PA14 setting value     |
| Direction of           | PULS+        |           | 0                      |
| pulse group            | SIGN+        |           | pulse + direction      |
| CCW pulse group        |              |           | 1                      |
| CW pulse group         | SIGN+        |           | CCW+CW pulse           |
| A-phase pulse<br>group | PULS+        |           | 2                      |
| B-phase pulse<br>group | SIGN+        |           | 2-phase pulse<br>group |

|                        | Reverse mode: | PA15=1     |                        |
|------------------------|---------------|------------|------------------------|
| Pulse command<br>mode  | CW<br>CW      | CCW<br>CCW | PA14 setting value     |
| Direction of           | PULS+         |            | 0                      |
| pulse group            | SIGN+         |            | pulse + direction      |
| CCW pulse group        |               |            | 1                      |
| CW pulse group         | SIGN+         |            | CCW+CW pulse           |
| A-phase pulse<br>group | PULS+         |            | 2                      |
| B-phase pulse<br>group | SIGN+         |            | 2-phase pulse<br>group |

a. Input interface sequence diagram of pulse + symbol (max. pulse frequency 1MHz)



b. Input interface sequence diagram of CCW pulse/CW pulse (max. pulse frequency 1MHz)



c. Input interface sequence diagram of 2-phase command pulse (max. pulse frequency 1MHz)



Sequence parameters of pulse input are listed bellow.

| Parameter    | <sup>t</sup> ck | <sup>t</sup> h | tj   | <sup>t</sup> rh | t <sub>rl</sub> | t <sub>s</sub> | <sup>t</sup> qck | <sup>t</sup> qh | t <sub>ql</sub> | <sup>t</sup> qrh | <sup>t</sup> qrl | <sup>t</sup> qs |
|--------------|-----------------|----------------|------|-----------------|-----------------|----------------|------------------|-----------------|-----------------|------------------|------------------|-----------------|
| Differential |                 |                |      |                 |                 |                |                  |                 |                 |                  |                  |                 |
| drive input  | >1              | >0.3           | >0.3 | <0.2            | <0.2            | >2             | >1               | >0.3            | >0.3            | <0.2             | <0.2             | >0.2            |
| (µs)         |                 |                |      |                 |                 |                |                  |                 |                 |                  |                  |                 |
| Single-end   |                 |                |      |                 |                 |                |                  |                 |                 |                  |                  |                 |
| drive input  | >5              | >2.5           | >2.5 | <0.3            | <0.3            | >2.5           | >10              | >5              | >5              | <0.3             | <0.3             | >2.5            |
| (µs)         |                 |                |      |                 |                 |                |                  |                 |                 |                  |                  |                 |

### 3.3.4 Switching Value Input

Two examples of wiring are provided bellow, Inx represents input point: (SON, ALRS, FSTP, RSTP, SC1/CLE, SC2/INH, ZSL, FIL, RIL, GIN).



DC15V $\sim$ 24V power (above 1A) should be provided for servo unit. It is suggested the same power with output circuit should be used.

Input coupler is on when Inx connects to 0V, and the signal is ON, input is active. Monitor window dP - In can be used for judgment, when the input point is ON, corresponding LED lights up. When the input point is OFF, corresponding LED is not work. This monitor window is used for debugging and examining the control signal of the servo unit.



#### Detailed instructions for input signals:

> COM+, COM- are input ports of external specified power (15V $\sim$ 24V).

#### Attentions

Polar of the power can not be connected reversely, otherwise the servo unit cannot work.



۹۵ -

on

Servo enable is operated when SON is ON. Check the monitor window dPrn and ≻

| dP- on is  | displayed.                              |       |         |            |
|------------|-----------------------------------------|-------|---------|------------|
| Related    | Meaning                                 | Llnit | Default | Applicable |
| parameters | Meaning                                 | Onit  | value   | modes      |
|            | When there is no external SON signal    |       |         |            |
|            | input, motor enable is enforced in the  |       |         |            |
|            | servo unit.                             |       |         |            |
|            | PA54=0: When external input signal      |       | 0       | ПС         |
| FA04       | SON is ON, the motor is enabled.        |       | 0       | г, э       |
|            | PA54=1: Motor enable is enforced in the |       |         |            |
|            | servo unit, and the external SON signal |       |         |            |
|            | is not needed.                          |       |         |            |



The motor is turned on when the servo unit works normally. If the servo unit has troubles, the alarm code occurs. Please refer to chapter 8 troubles and troubleshooting.

⊳ When ALRS is ON, alarms that smaller than No. 9 alarm are cleared by ALRS signal after trouble clearing. Alarms that bigger than No. 9 alarm can only be cleared after trouble clearing and power on again. When SON is ON, the function of alarm clearing is invalid.



FSTP, RSTP: Drive prohibition signal is usually matched with stroke switch to avoid  $\geq$ over travel.

| Input | signal | Operation  |            |  |
|-------|--------|------------|------------|--|
| FSTP  | RSTP   | CCW        | CW         |  |
| ON    | ON     | 0          | 0          |  |
| ON    | OFF    | 0          | Prohibited |  |
| OFF   | ON     | Prohibited | 0          |  |
| OFF   | OFF    | Prohibited | Prohibited |  |

Note: O represents normal. When drive prohibition function is not used, PA20 is set to 1 to shield drive prohibition function.

- FIL: CCW torque limit. When FIL is ON, the maximum torque of the motor is limited by the setting of PA36.
- RIL: CW torque limit. When RIL is ON, the maximum torque of the motor is limited by the setting of PA37.

### 3.3.5 Output of Switch Value

1. In DAT2000 series product, except signal HOLD, CZ, other output signals are single-end transistor output. Emitter of the coupler has been connected to COM-.



2. Switching value output of DAT2000C series product is double-end transistor output:



OUTx represents output points (ALM, SRDY, ZSP, COIN, HOLD, CZ)



• Wiring diagram of single-end transistor output



#### • Wiring diagram of double-end transistor output



When OUTx is connected to COM- or OUTx+ is connected to OUTx, input point is ON. Monitor window dP-UUE can be used for judgment, when input point is ON, corresponding LED lights up. When input point is OFF, corresponding LED does not light.



> ALM of the servo unit is output when abnormity is detected. Output state is relevant to PA47.

| PA47=0 | ALM signal output coupler is OFF when alarm occurs |
|--------|----------------------------------------------------|
| PA47=1 | ALM signal output coupler is ON when alarm occurs  |



SRDY represents servo unit is ready. SRDY signal output photo coupler is connected when the motor power-on is excited.



- ZSP represents zero-speed output, i.e. when the speed of the motor is zero, photo coupler of ZSP signal output is ON.
- CZ represents zero point signal of encode: For incremental encoder, sequence is in accordance with Z signal (one-rotation signal) feedback from motor encoder, as shown below:



For absolute type encoder, AB-phase pulse number per circle is set by servo parameter, zero point signal CZ is output at the same time.



HOLD: Release signal of safe brake of the motor with a band-type brake. Refer to 6.2 for output logic of this signal.

### Attentions

1. When output signal is open collector type, its maximum load current is 100mA, maximum voltage of external DC current is 25V. If it exceeds the specific requirement or output end directly connect to the power, servo unit will be damaged.

2. If the load is inductive load, freewheeling diode should be paralleled with two ends of the load. If the freewheeling diode is connected reversely, the servo unit will be damaged.

# GSK CNC

# 3.4 Connection of Feedback Signal

### 3.4.1 Introductions for CN2 of DAT2000

The encoder interface CN2 of the motor of the DAT2000 servo unit is Pin 25 female. The connector for making control wire is Pin 25 male (the type is G3150-44FBNS1X1, provided by WIESON Company). See the following figure for the definition of the pins.



| Pin<br>No | Name | Meaning                                       | Pin No. | Name | Meaning                                 |
|-----------|------|-----------------------------------------------|---------|------|-----------------------------------------|
| 1         | 0V   |                                               | 14      | FG   |                                         |
| 2         | 0V   | Encodor nowor ()                              | 15      | FG   | Frame ground                            |
| 3         | 0V   |                                               | 16      | 0V   | Encoder power $(-)$                     |
| 4         | 0V   |                                               | 17      | 5V   | Encoder nower $(+)$                     |
| 5         | 5V   |                                               | 18      | 5V   |                                         |
| 6         | 5V   | Encoder power (+)                             | 19      | W+   | Feedback of incremental type encoder W+ |
| 7         | W-   | Feedback of<br>incremental type<br>encoder W— | 20      | V+   | Feedback of incremental type encoder V+ |
| 8         | V—   | Feedback of<br>incremental type<br>encoder V— | 21      | U+   | Feedback of incremental type encoder U+ |
| 9         | U—   | Feedback of<br>incremental type<br>encoder U— | 22      | Z+   | Feedback of incremental type encoder Z+ |
| 10        | Z—   | Feedback of<br>incremental type<br>encoder Z— | 23      | B+   | Feedback of incremental type encoder B+ |
| 11        | В—   | Feedback of<br>incremental type<br>encoder B— | 24      | A+   | Feedback of incremental type encoder A+ |
| 12        | A—   | Feedback of<br>incremental type<br>encoder A— | 25      | NC   |                                         |
| 13        | ОН   | Input terminal of motor temperature sensor    |         |      |                                         |

This interface is only applicable for feedback signal of incremental encoder. The signal wire uses differential drive connection. The wiring diagram is shown below:



OH1 (CN2-13) is used for connecting overheating detector in the servo motor, which makes the servo unit have overheating protective function. Internal wiring diagram is shown below:



After connection, set PA 57 of the servo motor according to properties of overheating detector. If the servo motor has no overheating detector, PA57 is set to 0 and the shielding alarm occurs, OH1, 0V can not be connected.

| Related   | Name                                                                    |        | Parameter | Default | Application |  |  |
|-----------|-------------------------------------------------------------------------|--------|-----------|---------|-------------|--|--|
| parameter | Name                                                                    | Unit   | scope     | value   | mode        |  |  |
|           | Alarm shielding for motor overheating                                   |        | 0~2       | 0       | P, S        |  |  |
|           | PA57=0: shielding alarm                                                 |        |           |         |             |  |  |
| PA57      | PA57=1: logic alarm when the check switch is the normally-closed in the |        |           |         |             |  |  |
|           | appropriate motor's tem                                                 | peratu | re        |         |             |  |  |
|           | PA57=2: logic alarm when the check switch is the normally-open in the   |        |           |         |             |  |  |
|           | appropriate motor's temperature                                         |        |           |         |             |  |  |

## 3.4.2 Introductions for CN2 OF DAT2000C

Feedback signal interface CN2 of the encoder of the DAT2000C series products are high-density socket with 26 cores (type: MDR26-10226-55H3JL, provided by 3M company), which pin layout is shown below:



Fig. 3-45 Pin CN2

| Pin No. | Name | Meaning                                        | Pin No. | Name | Meaning            |
|---------|------|------------------------------------------------|---------|------|--------------------|
| 1       | OH1  | Input terminal of the motor temperature sensor | 14      | NC   |                    |
| 2       | W+   |                                                | 15      | NC   |                    |
| 3       | W-   |                                                | 16      | 0V   | Encoder nower (-)  |
| 4       | V+   |                                                | 17      | 0V   |                    |
| 5       | V-   |                                                | 18      | NC   |                    |
| 6       | U+   |                                                | 19      | 5V   |                    |
| 7       | U-   | Connect incremental                            | 20      | 5V   | Encoder power (+)  |
| 8       | Z+   | encoder feedback signal                        | 21      | 5V   |                    |
| 9       | Z—   |                                                | 22      | NC   |                    |
| 10      | B+   |                                                | 23      | MA+  |                    |
| 11      | B    |                                                | 24      | MA-  | Feedback signal of |
| 12      | A+   |                                                | 25      | SL+  | absolute encoder   |
| 13      | A—   |                                                | 26      | SL-  |                    |

 $1 \sim 13$  pins combine CN2 interface of DAT2000 series products, which applies to feedback signal of incremental encoder. Other pins apply to feedback signal of absolute encoder. OH1 (CN2-1) is used for connecting overheating detector in the servo motor, its connection is the same that of DAT2000 series products.

### 3.4.3 Connection to Encoder Signal of the Motor

The following diagram is a standard wiring of incremental encoder motor matched DAT2000 series products. When users use motors of other company or make encoder cable by themselves, refer to the standard wiring bellow. (If the motor is with a thermostat, connect the thermostat to OH1, 0V ports)



Fig. 3-46 Encoder wiring of SJT servo motor

The following diagram is a standard wiring of absolute encoder motor matched DAT2000C series products. When users use motors of other company or make encoder cable by themselves, refer to the standard wiring bellow. (If the motor with a thermostat, connect the thermostat to OH1, 0V ports)



Encoder signal socket of SJT series servo motor are all Pin15 male aviation socket, please select Pin 15 female aviation plug to make signal cable. Exterior of aviation plug of the encoder signal cable is as follows:



# Attentions

1. The length of power cable and feedback signal cable of the motor shall be within 20m, the distance between two cables shall be more than 30cm. Two cables can not be crossed through the same pipe or tied them together.

2. Signal cable uses stranded shielding cable, cross-section is  $0.15 mm^2 \sim 0.20 mm^2$ , connect shielding layer to PE terminal.

# 3.5 GSKLink Communication Function

DAT2000C series servo unit has GSKLink serial communication function. Connect CN4 or CN5 interfaces to GSKLink to realize real-time communication of the CNC. The servo unit can manage parameters through GSKLink (including parameter storage, parameter alteration, and parameter backup) or monitor the position, speed, current, humidity and I/O state information.

> Connection between CNC and servo unit is as follows:



There is a spare communication interface on the servo unit that is for GSKLink link. Serial terminal is to connect a resistor matched with 120Ω/0.25W between CANL of the interface and CHNH signal terminal.



> Circuit diagram of bus interface CN4, CN5 of GSKLink is as follows:



Communication diagram between GSK988T CNC system and servo unit



> Communication connection between servo units



> Set related parameters after connecting the communication cable correctly:

| Related   | Namo                           | Linit        | Parameter        | Default   | Application   |  |
|-----------|--------------------------------|--------------|------------------|-----------|---------------|--|
| parameter | Name                           | Unit         | scope            | value     | mode          |  |
|           | Servo unit slave No.           |              | 0~5              | 1         | P, S          |  |
| PA58      | Note: Set number to servo unit | that connect | ted to GSKLINK   | communica | tion bus, and |  |
|           | the number cannot be rep       | eated.       |                  |           |               |  |
|           | Selection of GSKLINK           |              | 0~1              | 0         | пς            |  |
|           | communication baudrate         |              | 0, -4            | 0         | г, З          |  |
|           | PA59=0: Shield GSKLIN          | NK commun    | ication function | ;         |               |  |
| PA59      | PA59=1: Set baudrate t         | o 500k;      |                  |           |               |  |
|           | PA59=2: Set baudrate t         | o 600k;      |                  |           |               |  |
|           | PA59=3: Set baudrate to 800k;  |              |                  |           |               |  |
|           | PA59=4: Set baudrate t         | o 1M₀        |                  |           |               |  |

**GGSK** CNC

### 3.6 Examples for Different Working Mode

### 3.6.1 Speed Mode Wiring of DAT2000 Series Products



Fig. 3-54 DAT2000 speed mode wiring

Signals with mark \* in the figure are necessary connection signal.

**#1**: Minimum power of external given switch power (DC 15V~24V) should not less than 35W.

**#2:** When speed command is  $0V \sim 10V$ , and PA4=1, PA46=1, SC1, SC2 are taken as CCW, CW rotation start signal. It is a necessary connection signal at this moment. When PA4=2, it is taken as an internal speed selection signal.

**#3:** DG is an output common port. Please connect it to power earth wire of output signal.

**#4:** OH is not connected to the servo motor without temperature control sensor. Set PA57=0 to shield motor overheating alarm.

**#5:** The metal shell of CN1, CN2 interfaces are connected to PE of servo unit, which can be taken as bonding point of shield line.

#### 3.6.2 Position Mode Connection of DAT2000 Series Products





Signals with mark \* in the figure are necessary connection signals.

#1: Minimum power of external given switch power (DC 15V~24V) should not less than 35W.

#2: DG is output common port. Please connect it to power earth wire of output signal.

**#3:** OH is not connected to the servo motor that without temperature control sensor. Set PA57=0 to shield motor overheating alarm.

**#4:** The metal shells of CN1, CN2 interfaces are connected to PE of servo unit, which can be taken as bonding point of shield line.

### 3.6.3 Speed Mode Connection of DAT2000C Series Products



Fig.3-56 Speed mode connection of DAT2000C

Signals with mark \* in the figure are necessary connection signals.

**#1**: Minimum power of external given switch power (DC 15V~24V) should not less than 35W.

**#2:** When speed command is  $0V \sim 10V$ , and PA4=1, PA46=1, SC1, SC2 are taken as CCW, CW rotation start signal. It is a necessary connection signal at this moment. When PA4=2, it is taken as an internal speed selection signal.

**#3:** Short circuit B1 and B terminals when braking resistor is not needed to connect.Connect resistance to P, B ends when external resistance is needed. Disconnect B1 and B at the same time.

**#4:** OH is not connected to the servo motor that without temperature control sensor. Set PA57=0 to shield motor overheating alarm.

**#5:** The metal shell of CN1, CN2 interfaces are connected to PE of servo unit, which can be taken as bonding point of shield line.

#### 3.6.4 Position Mode Connection of DAT2000C Series Products



Fig.3-57 Position mode connection of DAT2000C

Signals with mark \* in the figure are necessary connection signals.

#1: Minimum power of external given switch power (DC 15V~24V) should not less than 35W.

#2: Short circuit B1 and B terminals when braking resistor is not needed to connect.

Connect resistance to P, B ends when external resistance is needed. Disconnect B1 and B at the same time.

**#3:** OH is not connected to the servo motor that without temperature control sensor. Set PA57=0 to shield motor overheating alarm.

**#4:** The metal shell of CN1, CN2 interfaces are connected to PE of servo unit, which can be taken as bonding point of shield line.

GER CNC

# **CHAPTER 4 DISPLAY AND OPERATION**

#### 4.1 **Operation Panel**

Detailed functions of keys are as follows:

| Key   | Name                                       | Function explanation                             |  |  |  |  |  |
|-------|--------------------------------------------|--------------------------------------------------|--|--|--|--|--|
|       |                                            | 1. Parameter No. or parameter value is increased |  |  |  |  |  |
|       | Plus                                       | 2. Upturn1-level menu                            |  |  |  |  |  |
|       | 1 100                                      | 3. Increase motor speed when manual operation    |  |  |  |  |  |
|       |                                            | 4. CCW rotation starting when jog operation      |  |  |  |  |  |
|       |                                            | 1.Parameter No. or parameter value are reduced   |  |  |  |  |  |
| Minun |                                            | 2.Page down 2-level menu                         |  |  |  |  |  |
|       | Minus                                      | 3. Decrease motor speed when manual operation    |  |  |  |  |  |
|       | 4. CW rotation starting when jog operation |                                                  |  |  |  |  |  |
|       | Poturo                                     | Return to previous level menu or cancel the      |  |  |  |  |  |
|       | Return                                     | operation                                        |  |  |  |  |  |
|       | Multiplication                             | Parameter increases 100 by pressing this         |  |  |  |  |  |
|       | combination key                            | combination key once                             |  |  |  |  |  |
|       | Demultiplication                           | Parameter decreases 100 by pressing this         |  |  |  |  |  |
|       | combination key                            | combination key once                             |  |  |  |  |  |
|       | Confirmation key                           | Enter next lower menu or confirm data alteration |  |  |  |  |  |

When modifying the parameter, decimal light in the lower right corner of 6-section LED lights up, which indicates the value is confirmed to valid, and it can be turned off by pressing . If exit by pressing when the decimal light is not off, the setting of parameter is invalid.

### 4.2 Display Menu

6-section LED is composed of monitor window of DAT series products. Manage the contents with the form of menu.



First level menu comprises condition monitoring, parameter setting, manual operation, jog operation. See Fig. 4-1 for the selection and operation of the first level menu.



Fig.4-1 Operation of display menu

### 4.3 State Monitoring

dP- is state monitoring, and the user can select different monitor state on this menu. Set value of parameter PA03 here or set initial monitoring state when power on.

| Parameter<br>value | Initial monitor<br>when power-on | Operation | Monitor data    | Explanation                                                |
|--------------------|----------------------------------|-----------|-----------------|------------------------------------------------------------|
| PA3=0              | dP-5Pd                           |           | r 1000 <u>0</u> | Current motor speed 1000r/min                              |
| PA3=1              | dP-PoS                           |           | P45806          | Current motor position lower<br>five-order (pulse) 【2】     |
| PA3=2              | dP-Po5.                          |           | P. 18           | Current motor position higher<br>five-order(×100000 pulse) |



| Parameter<br>value | Initial monitor when power-on | Operation | Monitor<br>data                                                           | Explanation                                          |  |  |
|--------------------|-------------------------------|-----------|---------------------------------------------------------------------------|------------------------------------------------------|--|--|
| PA3=3              | dP-CPo                        |           | C458 10                                                                   | Position command lower<br>five-order (pulse) 【2】     |  |  |
| PA3=4              | dP-CPo.                       |           | C. 18                                                                     | Position command higher five-order (×100000 pulse)   |  |  |
| PA3=5              | dP-EPo                        |           | E 213                                                                     | Position deviation lower<br>five-order (pulse) 【2】   |  |  |
| PA3=6              | dP-EPo.                       |           | E. 0                                                                      | Position deviation higher five-order (×100000 pulse) |  |  |
| PA3=7              | dP-۲-d                        |           | F 10                                                                      | Motor torque 70%                                     |  |  |
| PA3=8              | dP-1                          |           | E.5 I                                                                     | Motor current 2.3A                                   |  |  |
| PA3=9              | dP-LSP                        |           |                                                                           | Reserve                                              |  |  |
| PA3=10             | ძዮ-ርიኒ                        |           |                                                                           | Position mode is current control mode                |  |  |
| PA3=11             | dP-F-9                        |           | 2838                                                                      | Pulse current of position command is 283.8KHZ        |  |  |
| PA3=12             | dP- CS                        |           | r 2100                                                                    | Speed command is 210r/min                            |  |  |
| PA3=13             | dP- [F                        |           | F 50                                                                      | Torque command 20%                                   |  |  |
| PA3=14             | dP-8Po                        |           |                                                                           | Reserve                                              |  |  |
| PA3=15             | dP-1 n                        |           | ln'''''ll                                                                 | Input terminal state 【4】                             |  |  |
| PA3=16             | dP-oUL                        |           | ٥٤٢                                                                       | Output terminal state 【4】                            |  |  |
| PA3=17             | dP-Cod                        |           | Cod O                                                                     | Reserve                                              |  |  |
| PA3=18             | dP-rn                         |           | <u>cn- on</u>                                                             | Operating 【5】                                        |  |  |
| PA3=19             | dP-Err                        |           | <u>Err- 9</u>                                                             | Display No.9 alarm                                   |  |  |
| PA3=20             | dPE5                          |           |                                                                           | Reserve                                              |  |  |
| PA3=21             | HL A-AP                       |           | Sample value of analog volta           5 ID         of high speed section |                                                      |  |  |

| Param  | Initial        | Operation                              | Monitor data    | Explanation                                         |
|--------|----------------|----------------------------------------|-----------------|-----------------------------------------------------|
| PA3=22 | dP-AJL         | •                                      | 5 10            | Sample value of analog voltage of low speed section |
| PA3=23 | ሪዮ-ሪናዮ         | $\underbrace{\mathbf{I}}_{\mathbf{I}}$ | u8r 1.05        | Software version No.                                |
| PA3=24 | 4P-[PL         |                                        | uEr2.06         | Hardware version No.                                |
| PA3=25 | dP-nŁ          |                                        | <u>nt - 150</u> | Rated torque of the motor is 15N·m                  |
| PA3=26 | dP-nl          |                                        | <u>ni - 145</u> | Rated current of the motor is 14.5A                 |
| PA3=27 | dP-Jn          |                                        | J-5000          | Rotation inertia of the motor                       |
| PA3=28 | dP-Por         |                                        | Pr 100          | Input power is 1Kw                                  |
| PA3=29 | db-F6b         |                                        | 56 3            | Radiator temperature is 32 centigrade degrees       |
| PA3=30 | 96-9C          |                                        | 91.6.318        | Voltage of DC bus line is 318V                      |
| PA3=31 | <u> </u>       |                                        | ь ISO38         | Single-turn position of the motor 【3】               |
| PA3=32 | 66-892         |                                        | H 38            | Lower digit of absolute position of the motor [3]   |
| PA3=33 | dP-Hb <u>S</u> |                                        | H. 12           | Higher digit of absolute position of the motor 【3】  |

[1] In <u>r 10000</u>, r is motor speed code, 1000 indicates that CCW speed of the motor is 1000r/min. If it rotates in CW direction, negative rotational speed <u>- 10000</u> is displayed. Unit: r/min.

[2] Feedback position value of the motor encoder consists of two parts: POS. (higher-five-order) + POS(lower-five-order).

Example: P. IB × 100000 + P45806 = 1845806 pulses

As the same principle, pulse value of the position command is composed of two parts: CPO. (higher-five-order)+CPO (lower-five-order).

Example:  $\boxed{18} \times 100000 + \boxed{138} = 1845810$  pulses

Relationship between CPO and POS:

 $\boxed{\textbf{P.}\_\_\_\_\_} \times 100000 + \boxed{\textbf{P}\_\_\_\_\_\_} = \frac{PA12}{PA13} (\boxed{\textbf{C}\_\_\_\_\_\_} \times 100000 + \boxed{\textbf{C}\_\_\_\_\_\_})$ 

Calculation formular of position deviation (EPO) when electronic gear ratio is 1: 1:





Fig.4-2 Select state monitoring with parameters

# 4.4 Parameter Setting

Default value: After set PA1 according to motor type, and execute operation  $EE - dEF_{,}$  corresponding value becomes the default value.

#### Operations for motor default value recovery:

- 1. Input specific code for altering motor parameters, that is PA0=385.
- 2. Search for corresponding type code of current motor according to code list in Appendix A.
- 3. Input motor type code to PA1, press to enter parameter management menu, and

| exec | execute EE-dEF to complete the operation of defaulted valued recovery. |                          |             |                 |         |             |  |  |
|------|------------------------------------------------------------------------|--------------------------|-------------|-----------------|---------|-------------|--|--|
|      | Related                                                                | Namo                     | Lloit       | Parameter       | Default | Application |  |  |
|      | parameter                                                              | Name                     | Onit        | scope           | value   | mode        |  |  |
|      | ΡΔΟ                                                                    | Parameter altering code  |             | 0~9999          | 315     | P, S        |  |  |
|      | 170                                                                    | When PA0=315, parameters | s except PA | 1, PA2 can be a | altered |             |  |  |
|      | PA1                                                                    | Motor type code          |             | 0~185           | 0       | P, S        |  |  |

Taking example of recovering default parameter of 130SJT-M100D (A $_{\Box}$ ) (motor type is 50) below:



Fig.4-3 Alter default parameter of the motor

**1**. 385 is specific code for setting default parameter of the motor. PA1 can be altered when PA0=385.

2. User can evaluate whether the default parameter of the servo unit is suitable for the motor through the operation of setting motor default parameter and related parameters that are written into default value or PA1 parameter value (see appendix A). If PA1 parameter value without a corresponding motor type code, the motor may not work



normally.

3. Press key to validate the parameter after alteration. Now, the altered value is reflected on the controller. If you are not satisfy with the parameters that is being altered, don't press key, press key to exit, and the parameter value is restored to the one before alteration. If you hope the altered parameter is valid after power off, please execute parameter writing operation.

On parameter setting, combination keys O+O makes parameter increases hundred-fold or decreases hundred-fold. Take the operation of changing the value of PA24 from 100 to 1800 as example.



Fig.4-4 Usage of key combination

### 4.5 Parameter Management

This part introduced operations for parameter write, reading, backup, recovery and default value recovery of DAT series servo unit in details. See the following figure for data storage relationship of parameter management.

|                | System power on: EEPROM parameter area                         |
|----------------|----------------------------------------------------------------|
| EE-SEL         | Parameter : Memory CEPROM parameter area                       |
| [EE- rd]       | Parameter : EEPROM parameter area  Memory                      |
| EE- BA         | Parameter : Memory C EEPROM backup area                        |
| <u> EE- r5</u> | Backup<br>recovery : EEPROM backup area                        |
| EE-dEF)        | Call out the efault parameters A Memory, EEPROM parameter area |

- Fig.4-5 Storage diagram of parameter management
- EE-SEt Parameter write indicates that write the parameters in the memory to EEPROM parameter area. Parameter alteration only changes the parameter value. It will change into original value after power on again. If the parameter value is needed to be changed forever,

parameter write operation is used. Write parameter in the memory to EEPROM parameter area, and the altered value will be used after power on again.

- EE-rd Parameter reading indicates that read data from EEPROM parameter area into memory. This process will be done once after power on. At the beginning, parameter values in the memory are the same as the ones in the EEPROM parameter areas. Parameter value in the memory will be changed after altering the parameter. If user is not satisfy with the altered parameter or the parameter is disarrayed, execute parameter reading operation. Read the data from EEPROM parameter area into memory again, recover original parameter at power on.
- ➢ EE−bA Parameter backup. Write parameter in the memory to EEPROM backup area. This function used to prevent incorrect alteration and the original parameter can not be recovered.
- EE-rS Backup recovery. Read parameters from EEPROM backup area to the memory. Write operation is needed, otherwise, the parameter will not change after power on.
- EE-dEF Default value recovery. It indicates that default value of corresponding parameter is read to the memory, and it is written to parameter area of EEPROM. The default parameter of the motor will be used at power on again. (See section 4.4 for parameter setting)



Operations for parameter management are as follows:

Fig. 4-6 Parameter management

Parameter writing example:



Fig. 4-7 Steps of parameter writing



# CHAPTER 5 DEBUGGING AND OPERATION

#### Attentions

Attention: When using the servo unit first time, users should page out the monitoring window of motor current after the first power on. Once SON turns into ON, please monitor in time the amount of motor current. If the current exceeds the rated amount, cut off the power immediately and check the parameter setting of the wiring and servo unit, or the motor is very likely to be damaged.

Debugging and operation modes will be introduced in this chapter in accordance with the values of PA4 parameter.

| Relevant  | Namo                                                                                                                     | Unit                                                          | Parameter                       | Default       | Application   |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|---------------|---------------|--|--|
| parameter | INAILIE                                                                                                                  | Onit                                                          | range                           | Value         | modes         |  |  |
| PA4       | Work mode choice                                                                                                         |                                                               | 0~6                             | 1             | P, S          |  |  |
|           | • PA4=0: Position mode;                                                                                                  |                                                               |                                 |               |               |  |  |
|           | Set the direction and                                                                                                    | angle of m                                                    | otor rotation throu             | igh digital p | ulse, the     |  |  |
|           | motor rotor controlled by                                                                                                | servo unit w                                                  | vill rotate to the co           | prresponding  | g angle in    |  |  |
|           | accordance with the pres                                                                                                 | et direction.                                                 | The rotary angle                | (position) a  | ind speed are |  |  |
|           | both controllable.                                                                                                       |                                                               |                                 |               |               |  |  |
|           | PA4=1: External ar                                                                                                       | nalog voltag                                                  | e command spee                  | ed mode       |               |  |  |
|           | Set the direction and                                                                                                    | angle of m                                                    | otor rotation throu             | igh analog v  | oltage, the   |  |  |
|           | motor rotor controlled by                                                                                                | servo unit w                                                  | vill rotate to the co           | prresponding  | g angle in    |  |  |
|           | accordance with the pres                                                                                                 | e with the preset direction and speed. This mode can not only |                                 |               |               |  |  |
|           | enhance motor's fast acti                                                                                                | on capabilit                                                  | y, but also streng              | then its turb | ulence-resist |  |  |
|           | ability of operation speed                                                                                               |                                                               |                                 |               |               |  |  |
|           | PA4=2: Internal digi                                                                                                     | tal commar                                                    | id speed mode                   |               |               |  |  |
|           | Users should set the                                                                                                     | values of F                                                   | $^{o}$ A24 $\sim$ PA27 whic     | h will be ch  | osen as the   |  |  |
|           | internal speed command                                                                                                   | correspond                                                    | ing to the rotary s             | peed of mo    | tor through   |  |  |
|           | status combination of inpl                                                                                               | ut points SC                                                  | C1 and SC2 in CN                | 11,           |               |  |  |
|           | PA4=3: Manual mod                                                                                                        | de                                                            |                                 |               |               |  |  |
|           | Operate under the m                                                                                                      | enu Sr -                                                      | ] <sub>,</sub> accelerate or de | ecelerate by  | v pressing '🔕 |  |  |
|           | or 🕑,                                                                                                                    |                                                               |                                 |               |               |  |  |
|           | • PA4=4: Jog mode                                                                                                        |                                                               |                                 |               |               |  |  |
|           | Operate under the menu, set the Jog speed value of PA21 first,                                                           |                                                               |                                 |               |               |  |  |
|           | then proceed CCW, CW revolving operation by pressing ' ${}^{igodoldsymbol{\otimes}}$ or ${}^{igodoldsymbol{\otimes}}$ '. |                                                               |                                 |               |               |  |  |
|           | • PA4=5: Encoder Zero-setting, preset well in production, no need to set                                                 |                                                               |                                 |               |               |  |  |
|           | again.                                                                                                                   | <b>11</b> ·                                                   |                                 |               |               |  |  |
|           | <ul> <li>PA4=b: Analog Zero-<br/>again</li> </ul>                                                                        | -setting, pre                                                 | set well in produc              | tion, no nee  | ea to set     |  |  |
|           | agam.                                                                                                                    |                                                               |                                 |               |               |  |  |

There are normally the following four steps in the operation of a new servo unit.

#### Chapter 5 Debugging run



The first three steps will be illustrated to facilitate users for a faster operation of the servo drive device. Users with different requirements may refer to "Function Debugging" of Chapter Six for detailed information.

- When using the servo unit first time, manual operation or JOG operation without connected load is recommended. Make sure the servo unit and motor function normally after moving, oscillating or assembling.
- After confirming the drive device work properly without connected load, users connect CN1 control signal and proceed debugging and operating in speed mode or position mode according to users' practical needs.
- After the debugging of signal connection, parameter setting and motor operation run regularly, connect the load for loaded operation.

## 5.1 Manual and Jog operation

First of all, wire correctly according to the following figure, **do NOT connect motor load**.



Fig. 5-1 Major loops connection illustration

The following schematic diagram is recommended to wire the control circuit of KMI.



After wire correctly, check according to the following illustrations before power on:

| Items to be examined                                                     | Examine methods                                                              |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|
| The specification of servo unit and motor matching or not.               | Refer to instruction manual to check nameplates of servo unit and motor      |
| Breaker, contactor and isolation transformer connected correctly or not. | Refer to "Choose of Peripheral Equipments"<br>on Appendix B.                 |
| R, S, T, PE, P, B1, B and U, V, W, PE connected correctly or not。        | Make sure field power circuit, if necessary, use multimeter for measurement. |
| Motor encoder feedback signal wire<br>connected correctly or not.        | Refer to Manual 3.4                                                          |
| Major loop terminal screw fixed firmly or not.                           | Check if any loose with screwdriver.                                         |

Make sure connect normally, and then turn on the power as the following time sequence.



#### 5.1.1 Manual Operation

After the servo unit turned on,  $\boxed{-100}$  will show as in normal condition; if the servo unit is out-of-action, alarming code  $\boxed{E_{-,--0}}$  will show, in this condition please refer to Chapter Eight (Abnormal and Managing) for solution.

| Essential<br>Parameter | Name              | Unit | Parameter<br>range | Default<br>Value | Application<br>Mode |
|------------------------|-------------------|------|--------------------|------------------|---------------------|
| PA4                    | Work mode choice  |      | 0~6                | 0                | P, S                |
| PA54                   | Interior enabling |      | 0~1                | 0                | P, S                |
Steps of manual operation (PA4=3) as follows:

| PR- 54<br>PR-<br>PR-<br>times | <ol> <li>Just after the servo unit is turned on, unit is turned on, unit is turned on, unit is turned on, unit is show, it's the monitoring window of motor operation speed.</li> <li>Check if PA1 corresponds to the right motor (refer to Appendix A), if PA1 is correct, the step is skipped, otherwise the user output the default parameters which corresponds to the servo motor of the servo unit (see section 4.4 for operation methods ).</li> </ol> |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | <ul> <li>3. Set PA4=3 and choose the manual operation mode.</li> <li>4. Set PA54=1, interior enabling (before enabling, make sure no danger to rotate the motor shaft); (If the user wants to cancel interior enabling, set PA54=0)</li> <li>5. Enter manual operation manual per the left operation drawing</li> </ul>                                                                                                                                       |
| Acc. V Dec.                   | <ul> <li>(previous parameter setting omitted)</li> <li>6. Keep pressing A, motor begins accelerating, release the button, speed remains unchanged;</li> <li>keep pressing A, and motor begins decelerating till zero speed, the motor will reverse-accelerate.</li> </ul>                                                                                                                                                                                     |

If there is abnormal condition in manual operation, such as oscillating or noisy in motor, it's necessary to debug the speed loop parameters of PA5,PA6 and PA8. Refer to 6.1 for specific debugging methods.

## 5.1.2 Jog Operation

After the servo unit is turned on,  $\boxed{\Box}$  will show as in normal condition; if the servo unit is out-of-action, alarming code  $\boxed{\Box}$  will show, in this condition please refer to Chapter Eight (Abnormal and Managing) for solution.

| Essential | Namo                | Unit  | Parameter  | Default | Application |
|-----------|---------------------|-------|------------|---------|-------------|
| Parameter | Name                |       | range      | Value   | Mode        |
| PA4       | Work mode choice    |       | 0~6        | 0       | P, S        |
| PA21      | JOG operation speed | r/min | -3000~3000 | 120     | S           |
| PA54      | Interior enabling   |       | 0~1        | 0       | P, S        |

Like manual operation, Jog operation also proceeds through operation panel.



Steps of Jog operation (PA4=4) as follows:

| P8- 54                           | 1. Just after the servo unit turned on, <b>□</b> . will show, it's the monitoring window of motor operation speed.                                                                                                                                                                                                                               |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PR-<br>Press 3<br>times          | <ol> <li>Check if PA1 corresponds to the right motor (refer to Appendix A), if<br/>PA1 is correct, the step is skip, otherwise the user outputs the default<br/>parameters which corresponds to the servo motor of the servo unit (see<br/>section 4.4 for operation methods ).</li> <li>Set PA4=4 and choose the Jog operation mode.</li> </ol> |
| Jr-<br>Ur-rEd                    | <ul> <li>Set PA21=500, Jog speed: 500 r/min.</li> <li>4. Set PA54=1, interior enabling (before enabling, make sure no danger to rotate the motor shaft); (If the user wants to cancel interior enabling, set PA54=0)</li> </ul>                                                                                                                  |
|                                  | 5. Enter manual operation manual per the left operation drawing. (previous parameter setting omitted)                                                                                                                                                                                                                                            |
| ©     ♥<br>ccw <sup>+</sup> + cw | 6. Keep pressing A, motor will operate at the speed of 500 r/min preset per PA21;                                                                                                                                                                                                                                                                |
|                                  | keep pressing $\textcircled{O}$ , motor will reverse-operate per the speed set per PA21. Release the button, motor stops rotating and remains zero-speed.                                                                                                                                                                                        |

If there is abnormal condition in Jog operation, such as oscillating or noisy in motor, it's necessary to debug the speed loop parameters of PA5,PA6 and PA8. Refer to 6.1 for specific debugging methods.

#### 5.2 Speed mode operation

#### 5.2.1 External analog voltage command

① First, refer to the wiring diagrams in section 3.61 (DAT 2000 series) or section 3.6.3 (DAT2000C series) for correct wiring, and pay attention to the essential input signals in the following chart which must be connected to.

2 ,After correct connection, all of the input signals must be OFF, the power is turned on and the essential parameters are set .

| Essential | Parameter illustration                                                              |  |
|-----------|-------------------------------------------------------------------------------------|--|
| parameter |                                                                                     |  |
| PA4       | PA4=1 Choose external analog voltage command speed mode                             |  |
|           | Voltage range of analog control signal under speed mode:                            |  |
|           | PA46= 0: $(-10V \sim +10V)$ effective, voltage command is positive, motor CCW       |  |
| FA40      | rotates; Voltage command is negative, motor CW rotates.                             |  |
|           | PA46= 1: $(0 \sim +10V)$ Effective, SC1, SC2 are the rotating start signals of CCW, |  |

|      | CW respectively.                                                                                                                    |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | PA46= 0: $(-10V \sim +10V)$ effective:                                                                                              |  |  |  |
|      | PA19= 0: Motor CCW rotates when voltage command is positive.                                                                        |  |  |  |
|      | PA19= 1: Motor CW rotates when voltage command is positive.                                                                         |  |  |  |
| PA19 | PA46= 1: $(0 \sim +10V)$ effective:                                                                                                 |  |  |  |
|      | PA19= 0: Motor CCW rotates when SC1 is ON, or motor CW rotates                                                                      |  |  |  |
|      | when SC2 is ON.                                                                                                                     |  |  |  |
|      | PA19= 1: Motor CW rotates when SC1 is ON, or motor CCW rotates                                                                      |  |  |  |
|      | when SC2 is ON.                                                                                                                     |  |  |  |
|      | Analog command gain:                                                                                                                |  |  |  |
|      | PA29 sets the motor rotating speed                                                                                                  |  |  |  |
| PA29 | Different motors have different rated rotating speeds, so the value should be set according to motor models.<br>PA29=75 $100$ $100$ |  |  |  |
|      | E.g.: The responding rated rotating speed<br>of GSK110SJT-M060D (A□) is 2500r/min.<br>Set PA29=250.                                 |  |  |  |
|      | 10V command corresponds to motor at 2500r/min.                                                                                      |  |  |  |
|      | 5V command corresponds to motor at 1250r/min,                                                                                       |  |  |  |
|      | 1V command corresponds to motor at 250r/min.                                                                                        |  |  |  |

3. Basic debugging operation

1. After the essential parameters is set completely, the user enters into the step of parameter-read-in operation. (Refer to Section 4.5 for the operation illustration of  $\boxed{\text{EE-SEL}}$  on parameter management)

2. Set a minor analog command to make the input signal SON turns ON, the motor will rotates following the command.

> PA46=0, analog command -10V $\sim$ +10V effective; take the following diagram for example: input analog command n (r/min), the on-off control motor of SON will operate or stop; Command unchanged, if the motor direction reverse, the value of parameter PA19 will change.





Fig 5-2 Time sequence of motor operation when PA46=0

> PA46=1, analog command  $0 \sim 10V$  effective, set SC1, SC2 as the positive-and-negative rotating signals. If analog voltage turns to be negative, the motor will not function.



Fig 5-3 Time sequence of motor operation when PA46=1

t1, t2 represents the accelerating and decelerating time of motor respectively, the larger the motor load inertia is, the longer the accelerating & decelerating time will be.

3. Gently increase the analog command to fasten the operation speed of motor. Meanwhile monitor the motor's operation condition and check if oscillation or noise occurs, the speed is stable as well as motor current exceed the rated value. Observe the value of motor current by monitoring dP-I In normal condition, the displayed current value won't exceed the rated one.

4. If the motor rotates from zero-speed to the maximum positive rotating speed, or from the maximum negative rotating speed to the maximum positive speed in normal condition, users can proceed the debugging of other functions.

Troubleshooting of abnormal often met during the operation when the analog command speed

|        | -                                               |                                                        |
|--------|-------------------------------------------------|--------------------------------------------------------|
| Number | Abnormality during the debugging<br>operation   | Troubleshooting                                        |
| 1      | Motor rotating direction is                     | Refer to Chapter 6.3 for the switchover of             |
| 1      | inconsistent;                                   | motor rotating direction                               |
|        |                                                 | 1. Check if the shielding wire is connected correctly. |
| 2      | Oscillation or noise occur in motor             | 2. Refer to Chapter 6.1 for debugging                  |
|        |                                                 | illustration of fundamental performance                |
|        |                                                 | parameters.                                            |
|        |                                                 | 1. Inspect the command source mode, and                |
| 3      | Motor can only run in one direction;            | test the setting of PA46, PA19;                        |
|        |                                                 | 2. Check if the analog command input wire              |
|        |                                                 | connected reversely.                                   |
| 4      | Set OV command, motor will still move slightly; | Refer to Chapter 6.6.1 for offset adjustment.          |
| 1      |                                                 |                                                        |

mode are introduced in the following chart:

## 5.2.2 Internal digital command

 $(\ensuremath{\underline{1}})$  The essential input signal in the following chart must be connected.

| Essential input signal | Functions                                                             |
|------------------------|-----------------------------------------------------------------------|
| *COM+                  | The input point common terminal is the control supply input terminal. |
| *SON                   | Servo enabling signal can individually control motor enabling.        |
| *SC1                   | speed choice 1                                                        |
| *SC2                   | speed choice 2                                                        |

②,Confirm the connection is correct, all input signals must be OFF, the power supply is turned on and the essential parameter must be set.

| Essential parameter | Name                                                                    | Name                  |                                                              | Parameter<br>range                     | Default<br>value | Applicatio<br>mode                  | on |
|---------------------|-------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------|----------------------------------------|------------------|-------------------------------------|----|
| PA4=2               | Choose the internal digital<br>command speed mode                       |                       |                                                              | 0~6                                    | 0                | P, S                                |    |
|                     | Digital command<br>default value<br>PA24=500<br>PA25=2000<br>PA26=-1000 | Ope<br>Inter<br>Inter | ration speed<br>rnal speed 1<br>rnal speed 2<br>rnal speed 3 | I/O status<br>SC2<br>OFF<br>OFF<br>OFF | of selecti       | on speed<br>SC1<br>OFF<br>ON<br>OFF |    |
|                     | PA27=-1500                                                              | Inte                  | rnai speed 4                                                 | ON ON                                  |                  | ON                                  |    |

③ Basic debugging operation

**GGSK** CNC

1. After the essential parameters is set completely, the drive unit enters into the step of parameter-read-in operation. (Refer to Section 4.5 for the operation illustration of EE-SEE on parameter management)

2. Set input signal SC1 and SC2 turn OFF, the motor will rotate at the internal speed, i.e. 500.0r/min when SON turns ON. Observe the value of motor current by monitoring dP-1 In normal condition, the displayed current value won't exceed the rated one.

3. Switch over the four different internal speeds by changing the combination status of SC1 and SC2. Meanwhile monitor the motor's operation condition and check if oscillation or noise occurs, the speed is stable as well as motor current exceed the rated value. Following figure shows the successive switch-over time sequence of the four speeds.



4. When motor operates normally at the four-phase internal speed, users can proceed the debugging of other functions.

Troubleshooting of abnormality during the operation under the internal speed command mode introduced in the following chart:

| NO. | Abnormality during the debugging operation                               | Troubleshooting                                                                                               |
|-----|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1   | Motor rotating direction is inconsistent;                                | Refer to Chapter 6.3 for the switchover of motor rotating direction                                           |
| 2   | Oscillation or noise occurs in motor;                                    | Refer to Chapter 6.1 for debugging illustration of fundamental performance parameters.                        |
| 3   | The status of speed choice input signal is inconsistent with motor speed | Check dP- In to judge if the input signal correct. (refer to Chapter 3.3.4 for switching value input points ) |

## **5.3** Position Mode Operation

(1) First, refer to the wiring diagrams in section 3.61 (DAT 2000 series) or section 3.6.3 (DAT2000C series) for correct wiring, and pay attention to the essential input signals in the following chart which

| Essential input signals | Function                                                                    |
|-------------------------|-----------------------------------------------------------------------------|
| *COM+                   | Input point common terminal is the control supply input terminal.           |
| *SON                    | Servo enabling signal can individually control motor enabling in this mode. |
| *PULS+                  | position command input                                                      |
| *PULS-                  | Input model: 1. pulse + direction                                           |
| *SIGN+                  | 2. CCW pulse+ CW pulse                                                      |
| *SIGN-                  | 3. orthogonal pulse A/B phase                                               |

2 After correct connection, all of the input signals must be OFF, the power supply is turned on and the essential parameters must be set.

| Essential | Parameter illustration                                                                                    |  |
|-----------|-----------------------------------------------------------------------------------------------------------|--|
| parameter |                                                                                                           |  |
| PA4       | Choose position mode                                                                                      |  |
|           | Position command E-gear function:                                                                         |  |
|           | PA12 is the pulse command multiplying factor                                                              |  |
|           | PA13 is the pulse command frequency-division factor                                                       |  |
|           | Set the E-gear ratio of position command to match various pulse commands.                                 |  |
| PA12      | The calculating formula of E-gear ratio is as follows:                                                    |  |
| PA13      | $S = \frac{I}{\delta} \cdot \frac{CR}{CD} \cdot \frac{PA12}{PA13} \cdot \frac{L}{4C} \cdot \frac{ZD}{ZM}$ |  |
|           | (refer to Chapter 6.4.1 for detailed calculation method.)                                                 |  |
|           | position command pulse model choice                                                                       |  |
|           | PA14=0: pulse + direction                                                                                 |  |
| PA14      | PA14=1: CCW pulse + CW pulse                                                                              |  |
|           | PA14=2: Two-phase orthogonal pulse input; (refer to Chapter 3.3.3 for                                     |  |
|           | position command input)                                                                                   |  |
|           | Position command reverse direction                                                                        |  |
| PA15      | PA15=0: Maintain the original command direction                                                           |  |
|           | PA15=1: Take the reverse direction of input pulse command. (see also                                      |  |
|           | Chapter 6, Section 3)                                                                                     |  |

③ Basic debugging operation

**ggsk** CNC

1. After the essential parameters is set completely, the motor enters into the step of parameter-read-in operation. (Refer to Section 4.5 for the operation illustration of EE-SEE on parameter management)

2. Turn SON to ON and keep zero-speed, set the position pulse command with small frequency and then the motor will run. Observe the value of motor current by monitoring dP-1. In normal condition, the displayed current value won't exceed the rated one:



3. Gently increase the analog command to fasten the operation speed of motor. Meanwhile monitor the motor's operation condition and check if oscillation or noise occurs, the speed is stable as well as motor current exceed the rated value.

4. When the motor can operate along with command within the rated rotating speed, and that the

number of position command pulse  $\frac{dP-P_{O}S}{PA13}$  showed equals to the ones that  $\frac{dP-P_{O}}{PA13} \times \frac{PA12}{PA13}$ 

showed, users can proceed debugging of other functions.

Troubleshooting of abnormality during the operation under the position command mode are introduced in the following chart:

| No. | Abnormality during the debugging operation                                                                          | Troubleshooting                                                                                                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | dP-CPo No data is displayed, motor does not function after enabling;                                                | Test command wiring and upper computer                                                                                                           |
| 2   | dP-[Po] Data is displayed, motor does not function;                                                                 | Test enabling signal and the setting of essential parameter                                                                                      |
| 3   | Motor rotating direction is inconsistent                                                                            | Refer to Section 6.3 for the switch-over of<br>motor rotating direction                                                                          |
| 4   | Oscillation or noise occurs in motor                                                                                | Refer to Chapter 6.1 for debugging illustration of fundamental performance parameters.                                                           |
| 5   | Motor does not function                                                                                             | Test the mode of command source and<br>correctly set based on PA14.                                                                              |
| 6   | Data showed on dP-LPo is inconsistent with the pulse number of command source                                       | <ol> <li>Check the mask processing of control<br/>signal wire</li> <li>Keep away from strong interference source.</li> </ol>                     |
| 7   | The pulse value of $dP-CPo \times \frac{PA12}{PA13}$<br>is inconsistent with the pulse number<br>showed on $dP-PoS$ | When position command available, SON<br>signal is not always effective, i.e. SON may<br>turn OFF sometimes even if there is position<br>command. |

## Chapter 6 FUNCTION DEBUGGING

#### 6.1 Fundamental performance parameter debugging illustration

#### Attentions

The figure below shows the adjustment of fundamental performance parameters. For different motors or loads, it's likely that users need to moderately adjust some parts of parameters according to the following schematic diagram to achieve the best working condition of the servo motor. While over adjustment may lead to unstable operation of the servo unit.



Fig 6-1 Fundamental performance parameter adjustment diagram

When debugging motor parameters, users can first output the default parameters according to the corresponding motor model codes in Appendix A. If abnormal situations, such as oscillation, noise, creeping or insufficient force, occur during the operation, and the fundamental performance parameters need to be adjusted. Generally speaking, parameters in above diagram should first be adjusted in the inner-ring speed loop, and then the out-ring speed loop.

PA5 (Speed loop proportional gain):

The larger the PA5 speed loop proportional gain value is, the higher the servo rigidity will be; while if the value is over large, the motor is liable to oscillate (motor generates abnormal sound) when starting up or stopping running; the smaller the value is, the slower the motor responds. The user can add or decrease 50 each time on the basis of the default values for adjustment, and observe the effect. Please note the general value range of PA5 is  $150 \sim 900$ .

#### PA6 (Speed loop integral time factor)

The larger the value of PA6 speed loop integral time factor is, the faster the system will respond; While the system will turn unstable if the preset value is over large, and even oscillation occurs; the smaller the value is, the slower the motor responds. The integral action may weaken and the steady-state error can not be decreased if the value is too small. The user can add or decrease 50 each time on the basis of the default values for adjustment, and observe the effect. Please note the general value range of PA6 is  $20 \sim 500$ .

The proportional gain and integral time constant of speed loop should be proportionally adjusted

according to specific servo models and load condition. In general, the larger the load inertia is, the bigger the speed loop proportional gain and integral time factor will be. In the case of no oscillation occurs in the system, speed loop proportional gain is to be set as bigger as possible.

Fig 6-2 below shows the response curve of phase-step command input of a driven motor with certain inertia load.

Curve 1 shows the speed phase-step input curve when PA5, PA6 are relatively small; with quite soft motor character, slow dynamic response and comparatively large steady-state error.

Curve 2 shows the speed step-phase input curve when the value of PA5, PA6 are relatively proper. The rigidity of motor is moderate and dynamic respond fast.

Curve 3 shows the speed phase-step e input curve when PA5, PA6 are relatively large; instantaneous overshoot is to be the largest and the motor is liable to oscillate.



Fig. 6-2 Response curve of phase-step command input

• PA8 (Speed feedback filtering factor)

**GGSK** CNC

The larger the speed feedback filtering factor value is, the faster the speed feedback responds. The motor will generate big electromagnetic noise if the value is overlarge; the speed feedback will respond slower as the value decreases, and the speed will fluctuates more which may lead to oscillation if the value is over small. The user can add or decrease 50 each time on the basis of the default values for adjustment, and observe the effect. Please note the minimum value of PA8 should not less than 50.

#### • PA9 (Position loop proportional gain)

The closed position loop will work when the servo unit position loop adopts simple P adjustment, position mode and the speed mode orientation function. The larger the position loop proportional gain is, the faster the position command responds and the bigger the rigidity will be. With overlarge gain value, the motor will generate position overshoot and even oscillation when it starts or stop working;

the smaller the value is, the slower the response will be and tracking error will thereby increase. The user can add or decrease 50 each time on the basis of the default values for adjustment, and observe the effect. Please note Please note the general value range of PA9 is  $25\sim60$ .

• PA10 (Position loop feed-forward gain), PA11(Position loop feed-forward filtering factor):

PA10 adjust the speed loop through the speed information of position command, tracking error will decrease as the value increases, while the motor is liable to generate overshoot and oscillation if the value is overlarge.

PA11 actually carries on smoothing processing of the position command feedforward control. The lager the value is, the faster the phase-step speed command will be responded to, thereby better restraining the position overshoot and oscillation resulted from the sudden change of command speed. The smaller the value is, the less obvious the effect of feedforward control will be, while the control will generate bigger oscillation.

Generally speaking, PA10 (Position loop feed-forward gain) and PA11(Position loop feed-forward filtering factor) may not be used.

• PA50 (Analog command filtering factor)

The smaller the analog command filtering factor value is, the higher interference signal-resistant ability is. The response to speed command will be too slow if the value is too small. The larger the value is, the lower interference signal-resistant ability will be, while the response will faster. The user can add or decrease 50 each time on the basis of the default values for adjustment, and observe the effect. Please note the minimum of PA50 is no less than 50.

#### 6.2 Application of brake releasing signal

In order to lock the vertical or tilting workbench linked with motor shaft and prevent the falling off of the table if the servo warning or power absent, the servo motor with electricity-breaking brake, i.e. brake servo, is usually used. To effectively control the motion of brake motor, brake releasing signal (HOLD) is furnished in this servo unit.

Electricity-breaking brake can only be used to maintain workbench, definitely can not to decelerate or to stop machine's running compulsively.

1. Correctly wire according to fig.6-3, and note the prerequisite connection of essential input signal in the following chart.

| Essential input signal | Function                                    |  |
|------------------------|---------------------------------------------|--|
| *COM-                  | Input point common terminal, is the control |  |
|                        | supply input terminal.                      |  |
| *SON                   | Servo enabling signal                       |  |
| *HOLD+                 |                                             |  |
| *HOLD-                 | Brake releasing signal                      |  |

Figure 6-3 shows the wiring theory of practical application of brake releasing signal controlling brake servo. Users offer 24V power and pay attention to the polarity of leading power when



connecting brake releasing signal (HOLD±). See the detailed wiring in the diagram below.



Fig. 6-3 Typical example of HOLD± brake releasing signal

Motors with different power will be configured with the electricity-breaking brakes with different power. So users can refer to the following chart listing the technical parameters of brakes configured to motors of different specifications when choosing 24V power.

| Motor base | Rated  | Rated   | $20^{\circ}$ Brake power (Unit W) | Releasing time |
|------------|--------|---------|-----------------------------------|----------------|
| number     | torque | voltage |                                   | ( <b>s</b> )   |
| 110        | 4      | 24V DC  | 20                                | 0.037          |
| 130        | 8      | 24V DC  | 25                                | 0.042          |
| 175        | 32     | 24V DC  | 40                                | 0.135          |

2. After correctly wiring, switch on the power and set the essential parameters. Considering the time sequence of HOLD signal, please use the following parameters related to braking action to adjust the time if there is some tiny movement of the machine or workbench because of the gravity.

| Related    | Namo                            | Unit  | Parameter | Default | Application |  |
|------------|---------------------------------|-------|-----------|---------|-------------|--|
| parameters | Name                            | Unit  | range     | value   | mode        |  |
|            | The maximum decelerating        |       |           |         |             |  |
| PA51       | time of motor before the action | ms    | 0~30000   | 50      | P, S        |  |
|            | of electricity-breaking brake   |       |           |         |             |  |
| PA52       | servo locked delay time         | ms    | 0~30000   | 50      | P, S        |  |
|            | Motor speed when                |       |           |         |             |  |
| PA53       | electricity-breaking brake      | r/min | 5~3000    | 30      | P, S        |  |
|            | acting                          |       |           |         |             |  |

Situation 1: when motor is in the state of rest, power supply of servo unit is turned off suddenly.



Generally, when HOLD is turned off, the servo unit will turned off at the same time. Users can adjust PA52 to delay the turned-off of servo unit to avoid tiny movement that machine or workbench occurs due to the gravity.

When the servo is turned off, the energy will be released through dynamic braking circuit in a short time. So if the value of PA52 is set big, the practical servo locking delay time will not exceed the time released by energy.

Situation 2: the motor is in operation, the servo unit is turned off suddenly.



Do not brake suddenly when the servo unit runs at a high speed, otherwise the brake will be damaged easily. The HOLD brake releasing signal should be shut off at the right time. PA51, PA53 should be properly adjusted first to decelerate the motor and then brake. PA53 is recommended to be set at 30r/min. The value of PA51 should be set according to the practical machinery movement.

If movement of machinery or workbench occurs because of the delaying of periphery switch power and relay coil when the power is unexpectedly shut off, the solution below is shown.



KM1 AC contactor is a control switch connected with servo unit power. A normally-open contacts of KM1 is connected to circuit of brake releasing signal, and when the power supply is turned off manually or suddenly, KM1 is turn off first and the normally-open contact is shut off thereby, then the brake of motor loses power and brake immediately to eliminate the delay of other source and to further guarantee that there is no movement of machinery or workbench.

### 6.3 The switchover of motor rotating direction

#### Standard mode

When all of the parameters of servo unit are set to be the default values, the relationship between speed/position command and motor rotating direction is the standard mode.

Reversal mode

If the servo motor wiring and speed/position command are unchanged, there is a "reversal mode" on servo unit which can make the servo motor rotate reversely.

#### 1. Position mode

| Related parameter | Name                                          | Unit | Parameter<br>range | Default<br>value | Application<br>mode |
|-------------------|-----------------------------------------------|------|--------------------|------------------|---------------------|
| PA15              | Reverse position command<br>direction         |      | 0~1                | 0                | Р                   |
|                   | PA15=0: remain the original command direction |      |                    |                  |                     |
|                   | PA15=1: reverse input pulse command           |      |                    |                  |                     |

| Command        | Standard setting (PA15=0) | Reversal mode (PA15=1) |
|----------------|---------------------------|------------------------|
| CCW<br>command | CCW                       | CW CW                  |
| CW<br>command  | CW                        | CCW                    |

#### 2. Speed mode

| Related                                           | Namo                                                                     | Unit        | Parameter     | Default     | Application |
|---------------------------------------------------|--------------------------------------------------------------------------|-------------|---------------|-------------|-------------|
| parameter                                         | Name                                                                     | Onit        | range         | value       | mode        |
|                                                   | Reverse analog                                                           |             |               |             |             |
|                                                   | command/reverse rotation                                                 |             | 0~1           | 0           | S           |
|                                                   | start of CCW, CW                                                         |             |               |             |             |
|                                                   | 1. If analog command is $-10V$                                           | ~+10V:      | (PA46=0)      |             |             |
| PA19=0: analog command positive, motor CCW rotate |                                                                          |             |               |             | command     |
|                                                   | negative, motor CW rotates;                                              |             |               |             |             |
| PA19                                              | PA19=1: analog command pos                                               | sitive, mot | or CW rotates | , analog co | ommand      |
|                                                   | negative, motor CCW rotates;                                             |             |               |             |             |
|                                                   | 2. If analog command is: $0 \sim 10V$ (PA46=1)                           |             |               |             |             |
|                                                   | PA19=0, Set the CCW rotating start signal, motor CCW rotates, Set the CW |             |               |             |             |
|                                                   | rotating start signal, motor CW rotates                                  |             |               |             |             |
|                                                   | PA19=1, Set the CW rotating start signal, motor CW rotates, Set the CCW  |             |               |             |             |
|                                                   | rotating start signal, motor CC                                          | W rotates   |               |             |             |

|                                     | Standard setting (PA19=0) | Reversal mode (PA19=1) |
|-------------------------------------|---------------------------|------------------------|
| (PA46=1)<br>CCW command<br>(PA46=1) | CCW                       | CW                     |
| CW command<br>(PA46=1)              | CW                        | CCW<br>CCW             |
| Positive voltage<br>(PA46=0)        | CCW CCW                   | CW                     |
| Negative<br>voltage<br>(PA46=0)     | CW                        | CCW                    |

### 6.4 Output of position feedback signal

Position feedback signal is to conduct within the servo unit frequency division with the pulse data from motor encoder (PG) and output them to upper computer through CN1 according to the preset shift pulses to achieve the functions as upper computer position closed loop control.

| Output mode Output signal names |         | Output signal names   | Function                          |  |
|---------------------------------|---------|-----------------------|-----------------------------------|--|
| Differential output             |         | *PAO+                 | Position feedback output signal A |  |
| Differential output             |         | *PAO-                 | phase                             |  |
| Differential output             |         | *PBO+                 | Position feedback output signal B |  |
|                                 |         | *PBO-                 | phase                             |  |
| Differential output             |         | *PZO+                 | Position feedback output signal Z |  |
|                                 |         | *PZO-                 | phase                             |  |
| Two forms o                     | f outpu | t wave form as below: |                                   |  |
|                                 | Star    | dard mode (PA22=0)    | reverse modePA22=1)               |  |
|                                 |         |                       |                                   |  |
|                                 |         |                       |                                   |  |
|                                 | PBO     |                       |                                   |  |
|                                 | F       | 2Z0e                  | PZ0e                              |  |

The pulse number of position feedback signal is set by the parameters of drive unit. Set the parameters as the following chart and according to the different types of encoders corresponding to the servo motors driven by drive unit (refer to this manual Section 1.2.1 to check the encoder types).





### 6.5 Function Debugging of Position Mode

#### 6.5.1 Position Command E-gear Ratio

Based on the relative machinery change gear, E-gear function refers to the function that can set the amount of motor movement which equals to the input command as any value through the adjustment of servo parameter in the controlling process, without any considering to the machinery reduction ratio or the encoder wiring.

| Relative  | Namo                                                | Linit | Parameter | Default | Application |
|-----------|-----------------------------------------------------|-------|-----------|---------|-------------|
| parameter | INAILE                                              | Onit  | range     | value   | mode        |
| PA12      | Position pulse command<br>multiplying factor        |       | 1~32767   | 1       | Р           |
| PA13      | Position pulse command<br>frequency division factor |       | 1~32767   | 1       | Р           |

Set the parameter of PA12 and PA13, it'll be convenient to match various pulse sources and achieve the expected control resolution (i.e. mm/pulse)

The practical load speed=command pulse speed ×G× machinery reduction ratio

The practical minimum displace =minimum command pulse route ×G× machinery reduction ratio



If E-gear ratio G is not 1, the result of division may have remainder, and there will be position deviation, the maximum deviation is the motor's minimum rotating amount (the minimum resolution).

Below is the formula of position command E-gear ratio adapting to absolute-type encoder motor

$$S = \frac{I}{\delta} \cdot \frac{CR}{CD} \cdot \frac{PA12}{PA13} \cdot \frac{L}{C} \cdot \frac{ZD}{ZM}$$
$$\implies G = \frac{PA12}{PA13} = \frac{C}{L} \cdot \frac{ZM}{ZD} \cdot \frac{\delta}{I} \cdot \frac{CD}{CR} \cdot S$$

- G: E-gear ratio, recommended range:
- C: Motor encoder wiring
- L: Screw rod lead (mm)
- ZM: Number of gear teeth of the screw rod end (if reduction gearbox exists)
- ZD: Number of gear teeth of motor end
- δ: The minimum output command unit of the system (mm/pulse)
- I: Command displacement
- S: Practical displacement
- CR: Upper computer command multiplying factor
- CD: Upper computer command frequency division factor

[e.g.] : Machine system: GSK988T, the motor directly connect with X-axis screw rod, the screw rod lead: 6mm, motor encoder: 17 bit absolute, leave out the system's command multiplying and

frequency division factors, what is the E-gear ratio of the servo unit.

**Solution:** As the motor directly connect with X-axis screw rod, then ZM : ZD=1; as a rule, S=1 and the command displacement equals to the practical displacement; also, if system GSK988T chooses0.1 $\mu$  as its machine accuracy, in the diameter programming, the minimum output command

unit of the X-axis,  $\delta = \frac{0.0001}{2}$  mm , substitute " $\delta$ " into the formula and get:  $G = \frac{PA12}{PA13} = \frac{2^{17}}{6} \times 0.00005 = \frac{2048}{1875}$ Then set PA12=2048, PA13=1875.

#### 6.5.2 Position arrival signal (COIN)

COIN is the position arrival signal under the position mode.

If the position tracking error is less than or equals to the preset value of PA16, servo unit output position arrival signal, COIN signal output optocoupler conducts.

| Relative parameter | Name                                                                                                                                                                                                                                   | Unit  | Parameter<br>range | Default | Application<br>mode |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|---------|---------------------|--|
|                    | Position arrival range                                                                                                                                                                                                                 | Pulse | 0~30000            | 20      | Р                   |  |
| PA16               | If the position tracking error (DP-EPO of the display menu) is less than or equa to the preset value of PA16, the servo unit regards the position has arrived, and the position arrival signal COIN outputs ON, otherwise outputs OFF. |       |                    |         |                     |  |



| Relative<br>parameter | Name                                                                                                                                          | Unit | Parameter<br>range | Default | Application<br>mode |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|---------|---------------------|
|                       | Position over-proof test<br>range                                                                                                             |      | 0~30000            | 400     | Р                   |
| PAT                   | PA17 Under the position mode, if the position tracking error exceeds the para of PA17, the servo unit position over-proof alarm issues Err-4. |      |                    |         |                     |

#### 6.5.3 Pulse deviation zero clearing (CLE)

CLE is the signal of pulse deviation zero clearing, if it displays ON under position mode, the pulse remained in the position deviation counter of the servo unit will be cleared.



#### 6.5.4 Pulse command inhibition (INH)

INH is the signal of pulse command inhibition, if it displays ON under position mode, servo unit inhibits receiving pulse command.



#### 6.6 Function debugging under speed mode

#### 6.6.1 Adjustment of analog command

The following parameters should be adjusted if the speed commands inconsistent with practical motor rotating speed.

| Parameter | Name                                                                                                                                                                                                                       | Unit                                                                                                                                                                          | Parameter range                            | Default                      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------|
|           | Analog command null<br>shift compensation                                                                                                                                                                                  | -30000~30000                                                                                                                                                                  | 0                                          | S                            |
| PA43      | If command voltage is "0"<br>sometimes can still rotate<br>which is caused by the I<br>"excursion (=command<br>upper computer or exter<br>PA43 may compensate<br>If the motor excurse to C<br>value to PA43 till the motor | V", the motor<br>es at a tiny speed,<br>little (Mv unit)<br>excursion) from<br>rnal command voltage.<br>this excursion in such wa<br>CW, decrease the<br>ptor get zero speed. | 2500 r/mi<br>100 -10V -10V -100<br>ay: 100 | n<br>PA43<br>Adjustment area |



The adjusting sequence of the analog value is recommended as follows:

1. First fix the value of PA29 which can be seen as the corresponded motor rotating speed when PA 29 sets 1V.

2. Adjust PA34 and revise the "excursion" to "0V" to stop the motor.

3. Finally set some speed commands, such as 500r/min, 1500r/min and 2500r/min, then judge if the motor speed slope consistent with the command according to the motor rotating speed displayed on LED.

#### 6.6.2 Speed arrival signal (COIN)

COIN is the speed arrival signal under the speed mode.

If the absolute value of practical speed equals to or greater than the setting, COIN signal outputs optocoupler conducts.

| Relative parameter | Name                                           | Unit  | Parameter<br>range | Default | Application<br>mode |
|--------------------|------------------------------------------------|-------|--------------------|---------|---------------------|
| PA28               | Speed arrival signal<br>output threshold value | r/min | 0~3000             | 50      | S                   |

e.g.: Set PA28=50, refers to the output speed arrival signal (COIN) when the practical speed greater than or equals to 50r/min.

As the diagram below: speed greater than 50r/min, output COIN signal.



# **GGSK** CNC

#### 6.6.3 Zero speed clamping (ZSL)

When the upper computer controls servo unit by analog voltage command, the zero speed clamping function can be used if the analog voltage command is required not to be "0V", the motor should be stopped and the servo being locked.

The "zero speed clamping" function can be achieved in this way:

ZSL zero speed clamping input point control.

Under speed mode, speed command is not 0 and ZSL displays ON to lock the motor.



# CHAPTER 7 PARAMETERS

# 7.1 Parameter List

|      |                                                       | P: Position Co | ntrol Mode | S: Speed | Control Mode |
|------|-------------------------------------------------------|----------------|------------|----------|--------------|
| No   | Nomo                                                  | Banga          | Default    | Unit     | Applicable   |
| NO.  | Name                                                  | Range          | Value      | Unit     | Mode         |
| PA0  | Password                                              | 0~9999         | 315        |          | P, S         |
| PA1  | Motor model code                                      | 0~185          | 0          |          | P, ,S        |
| PA2  | Software version (read only)                          |                | 105        |          | P, S         |
| PA3  | Monitoring setting at initialization                  | 0~33           | 0          |          | P, S         |
| PA4  | Working mode selection                                | 0~6            | 0          |          | P, S         |
| PA5  | Speed loop proportional gain                          | 5~2000         | 200        | Hz       | P, S         |
| PA6  | Speed loop integral time coefficient                  | 50~4000        | 100        |          | P, S         |
| PA7  | Low-pass filter on current command                    | 1~4000         | 1000       | ms       | P, S         |
| PA8  | Speed feedback filter coefficient                     | 10~4000        | 1000       |          | P, S         |
| PA9  | Position loop proportional gain                       | 20~1000        | 40         | 1/s      | Р            |
| PA10 | Position loop feedforward gain                        | 0~100          | 0          | %        | Р            |
| PA11 | Position feedforward filter<br>coefficient            | 10~3000        | 2000       | Hz       | Р            |
| PA12 | Position pulse command<br>multiplying ratio           | 1~32767        | 1          |          | Р            |
| PA13 | Position pulse command frequency division ratio       | 1~32767        | 1          |          | Р            |
| PA14 | Position command mode selection                       | 0~2            | 0          |          | P, S         |
| PA15 | Position command direction<br>reversed                | 0~1            | 0          |          | Р            |
| PA16 | Position reach range                                  | 0~30000        | 20         | Pulses   | Р            |
| PA17 | Position excess error detection<br>range              | 0~30000        | 400        |          | Р            |
| PA18 | Position excess error detection<br>validity selection | 0~1            | 0          |          | Р            |
| PA19 | Analog speed command inverted                         | 0~1            | 0          |          | S            |
| PA20 | Drive unit input prohibition validity selection       | 0~1            | 1          |          | P, S         |
| PA21 | JOG running speed                                     | -3000~3000     | 120        | r/min    | S            |
| PA22 | Position feedback output inverted                     | 0~1            | 0          |          | P, S         |
| PA23 | Maximum speed limit                                   | 1~4000         | 2500       | r/min    | P, S         |
| PA24 | Internal speed 1                                      | -3000~3000     | 500        | r/min    | S            |
| PA25 | Internal speed 2                                      | -3000~3000     | 2000       | r/min    | S            |
| PA26 | Internal speed 3                                      | -3000~3000     | -1000      | r/min    | S            |

# **GSK** CNC

#### DAT Series AC Servo Drive Unit User Manual

| No.  | Name                                                          | Range         | Default<br>Value | Unit     | Applicable<br>Mode |
|------|---------------------------------------------------------------|---------------|------------------|----------|--------------------|
| PA27 | Internal speed 4                                              | -3000~3000    | -1500            | r/min    | S                  |
| PA28 | Speed arrival signal output valve value                       | 0~3000        | 50               | r/min    | S                  |
| PA29 | Analog input gain                                             | 0~400         | 250              |          | P, S               |
| PA30 | Position output pulse multiplying<br>ratio                    | 1~32          | 1                |          |                    |
| PA31 | Position output pulse frequency<br>division ratio             | 1~32          | 1                |          |                    |
| PA32 | Position feedback signal frequency division ratio             | 16~32767      | 20000            | Pulses   | P, S               |
| PA33 | Reserved                                                      |               |                  |          |                    |
| PA34 | Internal CCW torque limit                                     | 0~300         | 300              | %        | P, S               |
| PA35 | Internal CW torque limit                                      | -300~0        | -300             | %        | P, S               |
| PA36 | External CCW torque limit                                     | 0~300         | 100              | %        | P, S               |
| PA37 | External CW torque limit                                      | -300~0        | -100             | %        | P, S               |
| PA38 | Manual operation, JOG running<br>torque limit                 | 0~300         | 100              | %        | S                  |
| PA39 | Reserved                                                      |               |                  |          |                    |
| PA40 | Reserved                                                      |               |                  |          |                    |
| PA41 | Reserved                                                      |               |                  |          |                    |
| PA42 | Reserved                                                      |               |                  |          | S                  |
| PA43 | Analog command zero drift                                     | -30000 $\sim$ | 0                | 0.1r/min | S                  |
| _    | compensation                                                  | 30000         | -                | 0.11/1   | _                  |
| PA44 | Reserved                                                      |               |                  |          |                    |
| PA45 | Reserved                                                      |               |                  |          | S                  |
| PA46 | Analog command mode selection                                 | 0~1           | 0                |          | S                  |
| PA47 | Alarm output inverted                                         | 0~1           | 0                |          | P, S               |
| PA48 | Reserved                                                      |               |                  |          |                    |
| PA49 | Reserved                                                      | 4 0000        | 4000             |          |                    |
| PA50 | Analog command filter coefficient                             | 1~3000        | 1000             |          | S                  |
| PA51 | The maximum deceleration time before the safety brake enabled | 0~30000       | 50               | ms       | P, S               |
| PA52 | Servo lock delay time                                         | 0~30000       | 50               | ms       | P, S               |
| PA53 | Motor speed when safety brake is enabled                      | 5~3000        | 30               | r/min    | P, S               |
| PA54 | Inner enable                                                  | 0~1           | 0                |          | P, S               |
| PA55 | Reserved                                                      |               |                  |          |                    |
| PA56 | Reserved                                                      |               |                  |          |                    |
| PA57 | Motor overheat alarm shielded                                 | 0~2           | 0                |          | P, S               |
| PA58 | GSKLINK servo axis number                                     | 1~5           | 1                |          | P, S               |
| PA59 | GSKLINK communication baudrate selection                      | 0~4           | 1                |          | P, S               |

# <del>ل</del>ال

The default settings of shaded parameter are related to the motor models; therefore, the default values vary with motors.

## 7.2 Parameter Description

| Para. |                                        | Name                | Range           |                      | l      | Default<br>Value |                | Unit      | Applicable<br>Mode |  |
|-------|----------------------------------------|---------------------|-----------------|----------------------|--------|------------------|----------------|-----------|--------------------|--|
|       |                                        | Password            |                 | 0~9999               | 9      | 3                | 15             |           | P, S               |  |
| PA0   | When                                   | PA=315, parar       | neters oth      | her than PA          | 1,PA   | 2 are r          | nodifiabl      | e; To mo  | odify PA1, it is   |  |
|       |                                        |                     | ne              | eeded to se          | t PA   | 0 to 38          | 5.             |           |                    |  |
|       | Мс                                     | otor model code     | е               | 0~185                | ,      |                  | 0              |           | P, S               |  |
| PA1   | Set the mo                             | odel code of the    | e drive mo      | otor accordi         | ng to  | o Motor          | Model (        | Code List | (see APPENDIX      |  |
|       |                                        | A for details)      | , then the      | default val          | ues    | of the n         | notor cai      | n be rest | ored.              |  |
|       | Do not modify this default value in ge |                     |                 |                      |        | iaition.         |                |           |                    |  |
| PA2   | Softwar                                | e version (read     | l only)         | \                    |        | 1                | 05             |           | P, S               |  |
|       | Monitoring                             | g setting at initi  | alization       | 0~33                 |        |                  | 0              |           | P, S               |  |
|       |                                        | Monitoring          |                 | •                    |        |                  | Moni           | toring    |                    |  |
|       | Value                                  | setting at          | Instr           | uction               | V      | alue             | setti          | ng at     | Instruction        |  |
|       |                                        | initialization      |                 |                      |        |                  | initial        | zation    |                    |  |
|       | PA3=0                                  | dP-SPd              | Motor           | Motor speed          |        | 3=17             | - 46           | Lod       | Reserved           |  |
|       |                                        | PA3=1 <u>dP-Po5</u> | Currer          | nt motor             |        |                  |                |           |                    |  |
|       | PA3=1                                  |                     | pos             | Sition               | PA     | 3=18             | -96            | <b>CD</b> | Servo unit         |  |
|       |                                        |                     | iow-orae        | er 5 algits          |        |                  |                |           | working status     |  |
|       |                                        |                     | Currer          | nt motor             |        |                  |                |           |                    |  |
|       |                                        |                     |                 |                      | DA0 40 |                  |                |           |                    |  |
|       | PA3=2                                  | <u>d8-805.</u>      | high-ord        | der 5 digits         |        | 3=19             | <u> 62-5-r</u> |           | Alarm display      |  |
| PAS   |                                        |                     | ×10000          | 0 (pulse)            |        |                  |                |           |                    |  |
|       |                                        |                     | Pos             | sition               |        |                  |                |           |                    |  |
|       | PA3=3                                  | dP-[Po              | com             | mmand                |        | 3=20             | dPES           |           | Reserved           |  |
|       |                                        |                     | iow-orue<br>(ni | er o aigits<br>ilse) |        |                  |                |           |                    |  |
|       |                                        |                     | Pos             | sition               |        |                  |                |           | High-speed         |  |
|       |                                        |                     | com             | mand                 |        | 2-21             |                | 0 10      | segment            |  |
|       | PA3-4                                  |                     | high-ord        | er 5 digits          | PA3=21 |                  | 0              |           | voltage            |  |
|       |                                        |                     | ×10000          | 0 (pulse)            |        |                  |                |           | sampling value     |  |
|       |                                        |                     | Pos             | sition               |        |                  |                |           | Low-speed          |  |
|       | PA3=5                                  | dP-8Po              | diffe           | rence                | PA     | 3=22             | <u>ام</u>      | AJL       | segment            |  |
|       |                                        |                     | low-orde        | er 5 digits          |        |                  |                |           | voltage            |  |
|       |                                        |                     | (pi             | use)                 |        |                  |                |           | sampling value     |  |

| Para |        | Monitoring     |                                                                     |        | Monitoring     |                                           |
|------|--------|----------------|---------------------------------------------------------------------|--------|----------------|-------------------------------------------|
|      | Value  | setting at     | Instruction                                                         | Value  | setting at     | Instruction                               |
|      |        | initialization |                                                                     |        | initialization |                                           |
| PA3  | PA3=6  | <u>dP-EPo.</u> | Position<br>difference<br>high-order 5<br>digits ×100000<br>(pulse) | PA3=23 | dP-d5P         | Software<br>version No.                   |
|      | PA3=7  | dዖ-৮-ዓ         | Motor torque                                                        | PA3=24 | 95-CPF         | Hardware version No.                      |
|      | PA3=8  | dP-1           | Motor current                                                       | PA3=25 | ძ₽-იხ          | Rated torque                              |
|      | PA3=9  | dP-LSP         | Reserved                                                            | PA3=26 | dP-nl          | Rated current                             |
|      | PA3=10 | ძ₽-[იŁ         | Current control<br>mode                                             | PA3=27 | dP-Jn          | Rotational inertia                        |
|      | PA3=11 | dP-F-9         | Position<br>command pulse<br>frequency                              | PA3=28 | dP-Por         | Input power                               |
|      | PA3=12 | 88- CS         | Speed command                                                       | PA3=29 | 95-F6b         | Radiator<br>temperature                   |
|      | PA3=13 | 96- CF         | Torque<br>command                                                   | PA3=30 | 96-9C          | DC bus voltage                            |
|      | PA3=14 | dP-8Po         | Motor<br>one-rotation<br>signal position                            | PA3=31 | <u>dP-865</u>  | Single-ring<br>position                   |
|      | PA3=15 | dP-1 n         | Input terminal status                                               | PA3=32 | 68-XP2         | Absolute<br>position low<br>order digits  |
|      | PA3=16 | dP-oUt         | Output terminal status                                              | PA3=33 | <u>dP-X65</u>  | Absolute<br>position high<br>order digits |

्र

The shaded items in this table are just for the motor with absolute encoder.

#### Continued:

| Relevant<br>Parameter | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default<br>Value                                                                                                                                                                                                     | Unit                                                                                                                | Applicable<br>Mode                                                                                                                             |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                       | Working mode selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0~6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                    |                                                                                                                     | P, S                                                                                                                                           |  |
| PA4                   | PA4=0: position mode (mode 1<br>Digital pulses determine the ro<br>rotor rotates in the determined<br>the rotation angle (position) an<br>PA4=1: External analog voltag<br>The rotation direction and spe-<br>unit makes the rotor rotates in<br>only improves the motor respo-<br>anti-disturbance.<br>PA4=2: Internal digit specifies<br>The values of PA24~PA27 se<br>running speed is selected thro<br>status.<br>PA4=3: Manual mode (mode 4<br>It is operated in Sr— menu. A<br>keys or O.<br>PA4=4: JOG mode (mode 5);<br>It is operated in Jr—menu. Th<br>CCW/ CW rotation can be sele<br>PA4=5: Encoder zeroing. (It is<br>PA4=6: Analog zeroing (it is ac | <ul> <li>a direction direction</li> <li>a direction and</li> <li>d speed are concerning</li> <li>e specifies specifies specifies specifies specifies specifies specifies specifies are determined</li> <li>b direction and are determined</li> <li>c speed (mode 3</li> <li>t by user are used to be user are used to be user are used to be user are used the combination of the determined</li> <li>Acceleration/determined</li> <li>e motor works</li> <li>e cted through key adjusted already.</li> </ul> | and angle. T<br>at specified a<br>ntrollable.<br>ed (mode 2);<br>ned by the and<br>direction an<br>, but also enl<br>);<br>used as spee<br>ination of inp<br>celeration can<br>at the JOG s<br>eys or (<br>dy.)<br>) | he servo ur<br>angle. In po<br>alog voltag<br>d speed. Th<br>hances the<br>d command<br>out point SC<br>n be perfor | hit makes the<br>position mode,<br>e. The servo<br>his mode not<br>capability of<br>d. The motor<br>C1 and SC2'<br>med through<br>y parameter. |  |
|                       | Speed loop proportional gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5~2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                  | Hz                                                                                                                  | P, S                                                                                                                                           |  |
| PA5                   | The bigger the speed loop p<br>However, excessive value ma<br>motor) during motor start or sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | proportional gain<br>ay easily lead<br>op. The smaller                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in, the great<br>to vibration (<br>the value is,                                                                                                                                                                     | er the serv<br>(abnormal s<br>the slower r                                                                          | o rigidity is.<br>sound in the<br>response is.                                                                                                 |  |
|                       | Speed loop integral time<br>coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50~4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                  |                                                                                                                     | P, S                                                                                                                                           |  |
| PA6                   | The greater the speed loop int<br>responds. However, excessive<br>cause vibration. Smaller value<br>as possible on condition that n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tegral time cons<br>value may lea<br>results in slowe<br>o vibration is ge                                                                                                                                                                                                                                                                                                                                                                                                                                    | stant value is<br>d to instabilit <u>y</u><br>er response, s<br>enerated.                                                                                                                                            | , the quicke<br>y of the sys<br>so, set the v                                                                       | r the system<br>tem, or even<br>alue as great                                                                                                  |  |
|                       | Current command low pass<br>filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1~4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000                                                                                                                                                                                                                 | ms                                                                                                                  | P, S                                                                                                                                           |  |
| ΡΑ/                   | It is used to limit the current command belt, and avoid current rush and vibration.<br>Set the value as great as possible on condition that on vibration is generated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                     |                                                                                                                                                |  |
|                       | Speed feedback filter<br>coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10~4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000                                                                                                                                                                                                                 |                                                                                                                     | P, S                                                                                                                                           |  |
| PA8                   | The greater the speed feedbac<br>responds. However, excessive<br>value results in slower respons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ck filter coefficie<br>e value may lea<br>se, larger speed                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ent is, the quid<br>ad to electror<br>I fluctuation, c                                                                                                                                                               | cker the spe<br>magnetic no<br>pr even vibra                                                                        | ed feedback<br>bise. Smaller<br>ation.                                                                                                         |  |



DAT Series AC Servo Drive Unit User Manual

| Relevant<br>Parameter | Name                                                                                | Range                                                                                  | Default<br>Value | Unit           | Applicable<br>Mode |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|----------------|--------------------|--|--|--|
|                       | Position loop proportional gain                                                     | 20~1000                                                                                | 40               | 1/s            | P                  |  |  |  |
| PAO                   | The greater the position loop                                                       | proportional ga                                                                        | in is, the quic  | ker the resp   | onse is and        |  |  |  |
| PA9                   | the greater the rigidity is. Howe                                                   | the greater the rigidity is. However, excessive value may lead to vibration during the |                  |                |                    |  |  |  |
|                       | motor start or stop. Smaller value results in slower response and greater following |                                                                                        |                  |                |                    |  |  |  |
|                       |                                                                                     | error.                                                                                 |                  |                |                    |  |  |  |
|                       | Position loop feedforward gain                                                      | 0~100                                                                                  | 0                | %              | Р                  |  |  |  |
|                       | Position loop feedforward gair                                                      | n is to adjust th                                                                      | e speed loop     | according      | to the speed       |  |  |  |
| PA10                  | information of position command. The greater the value is, the quicker the response |                                                                                        |                  |                |                    |  |  |  |
|                       | is, and the smaller the following                                                   | g error is. Howe                                                                       | ever, excessiv   | e setting va   | lue may lead       |  |  |  |
|                       | to instantaneous overshoot and vibration. When PA10 is set to 0, the position       |                                                                                        |                  |                |                    |  |  |  |
|                       | Position loop feedforward                                                           |                                                                                        |                  |                |                    |  |  |  |
|                       | filter coefficient                                                                  | 10~3000                                                                                | 2000             | Hz             | Р                  |  |  |  |
| PA11                  | Position loop feedforward filte                                                     | er coefficient is                                                                      | s used in the    | e smoothing    | g process of       |  |  |  |
|                       | step response is, which will suppress the overshoot and vibration caused by         |                                                                                        |                  |                |                    |  |  |  |
|                       | sudden speed change. It is val                                                      | id when PA10 i                                                                         | s not set to 0   |                |                    |  |  |  |
| DA40                  | Position pulse command                                                              | 4 00707                                                                                | 4                |                | P                  |  |  |  |
| PATZ                  | multiplying ratio                                                                   | 1~32/6/                                                                                | 1                |                | Р                  |  |  |  |
|                       | Position pulse command                                                              | 1~32767                                                                                | 1                |                | Р                  |  |  |  |
| PA13                  | frequency division ratio                                                            |                                                                                        |                  |                |                    |  |  |  |
|                       | Refer to section                                                                    | 6.4.1 Electronic                                                                       | c Gear Ratio f   | for details.   |                    |  |  |  |
|                       | Position command mode                                                               | 0~2                                                                                    | 0                |                | P, S               |  |  |  |
|                       | Position                                                                            | command puls                                                                           | se input mode    | ۰.<br>ا        |                    |  |  |  |
| PA14                  | P                                                                                   | A14=0: pulse +                                                                         | direction        |                |                    |  |  |  |
|                       | PA14=1: CCW /CW pulse input                                                         |                                                                                        |                  |                |                    |  |  |  |
|                       | PA14=2: AB phase orthogonal pulse input;                                            |                                                                                        |                  |                |                    |  |  |  |
|                       | Refer to section 3                                                                  | .3.3 Position Co                                                                       | ommand Inpu      | t for details. |                    |  |  |  |
|                       | Position command direction                                                          | 0~1                                                                                    | 0                |                | Р                  |  |  |  |
| PA15                  | reversed                                                                            |                                                                                        |                  |                |                    |  |  |  |
|                       | PA15=0: remai                                                                       | ns the original                                                                        | commanded of     | direction;     |                    |  |  |  |
|                       | PA15=0: the                                                                         | e input puise di                                                                       |                  | ersea.         | _                  |  |  |  |
| PA16                  | Position reach range                                                                | 0~30000                                                                                | 20               | Pulses         | Р                  |  |  |  |

| Relevant<br>Parameter | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rang                                             | 9         | Default<br>Value | Unit         | Applicable<br>Mode                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|------------------|--------------|------------------------------------------|
|                       | When the position following error (displayed as DP-EP0                                                                                                                                                                                                                                                                                                                                                                                                                              | 1: Comm                                          | and speed |                  |              |                                          |
|                       | in the menu) is less than or<br>equal to the setting value o<br>PA16, it means the positior                                                                                                                                                                                                                                                                                                                                                                                         | Position devi<br>f<br>dP-EP<br>COIN<br>(CN1-46/4 | ation     | N                | OFF          |                                          |
| PA17                  | Position excess error detection range                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0~300                                            | 00        | 400              |              | Р                                        |
|                       | In position mode, when the position following error exceeds the value set parameter PA17, servo unit issues an alarm.                                                                                                                                                                                                                                                                                                                                                               |                                                  |           |                  |              | alue set by                              |
| <b>D4</b> 40          | Position excess error<br>detection validity selection                                                                                                                                                                                                                                                                                                                                                                                                                               | on 0~1                                           |           | 0                |              | Р                                        |
| PA18                  | PA18=0: Detects the position excess error alarm;<br>PA18=1: does not detect for the excess error alarm;                                                                                                                                                                                                                                                                                                                                                                             |                                                  |           |                  |              |                                          |
| -                     | Analog speed<br>command inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0~1                                              |           | 0                |              | S                                        |
| PA19                  | On the condition that the external analog voltage is -10~10V (PA46=0),<br>PA19=0: when analog voltage is positive, motor CCW rotation is performed; wh<br>negative, motor CW rotation is performed.<br>PA19=1: when analog voltage is negative, motor CCW rotation is performed; wh<br>negative, motor CW rotation is performed.<br>On the condition that the external analog voltage is 0~10V (PA46=1):<br>PA 19=0: when SC1 is ON, motor CCW rotation is performed; when SC2 is O |                                                  |           |                  |              | ormed; when<br>ormed; when<br>SC2 is ON, |
|                       | PA=1: when SC1 is ON, I<br>CCW is performed.                                                                                                                                                                                                                                                                                                                                                                                                                                        | motor CW rota                                    | tion i    | s performed;     | when SC2     | is ON, motor                             |
|                       | Drive unit input<br>prohibition validity<br>selection                                                                                                                                                                                                                                                                                                                                                                                                                               | 0~1                                              |           | 1                |              | P, S                                     |
| PA20                  | PA20=0: when FSTP is OFF, the motor forward rotation is prohibited; when RSTP is OFF, the motor reverse rotation is prohibited;<br>When FSTP, RSTP are OFF at the same time, Err-7 occurs.<br>PA20=1: drive unit prohibit function is invalid.                                                                                                                                                                                                                                      |                                                  |           |                  |              |                                          |
| PA21                  | JOG running speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3000~300                                        | 0         | 120              | r/min        | S                                        |
| 17721                 | Set the speed in JOG running (Jr) mode. The running mode is selected by PA4.                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |           |                  |              |                                          |
| PA22                  | Position feedback<br>output inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0~1                                              |           | 0                |              | P, S                                     |
| FAZZ                  | Change the phase relation<br>so as to meet the requiren                                                                                                                                                                                                                                                                                                                                                                                                                             | nship between<br>nent of PC.                     | PA, I     | PB in position   | i feedback o | output signal,                           |



| Relevant<br>Parameter | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | Range            | Default<br>Value | Unit         | Applicable<br>Mode |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|------------------|--------------|--------------------|--|--|
|                       | PA22=0: maintain the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | original re                                                  | elationship in C | CN1 position fe  | eedback ou   | utput signal;      |  |  |
|                       | PA22=1: invert the rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ationship                                                    | between phas     | es PA, PB in     | position fee | edback output      |  |  |
|                       | signal. Shown is the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | llowing fi                                                   | gure:            |                  |              |                    |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90°                                                          | PA22=0           | PA22=            | 1            |                    |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | -                |                  |              |                    |  |  |
|                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A \                                                          |                  |                  | <b>^</b>     |                    |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                  |                  |              |                    |  |  |
|                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В                                                            |                  |                  |              |                    |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                  |                  |              |                    |  |  |
|                       | Maximum speed limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | 1~4000           | 2500             | r/min        | P, S               |  |  |
|                       | Limit the maximum run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ning spe                                                     | ed of servo mo   | otor. In analog  | command      | speed control      |  |  |
| PA23                  | mode, when PA23≥PA29×10, the maximum speed is set by PA29; wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                  |                  |              |                    |  |  |
|                       | PA29×10≥PA23, the n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | naximum                                                      | speed is set b   | y PA23.          |              |                    |  |  |
|                       | Note: PA29 specifies t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne rotatio                                                   | n speed per a    | nalog commai     | nd voltage   | (1V).              |  |  |
|                       | Internal speed 1~4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -30                                                          | 000~3000         |                  | r/min        | S                  |  |  |
|                       | In internal digital command speed mode, the parameters which set the speed are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                  |                  |              |                    |  |  |
|                       | selected by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | selected by combination of servo unit input points SC1, SC2. |                  |                  |              |                    |  |  |
| PA24 $\sim$           | SC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SC1                                                          | Interna          | al Speed         | Default      | Value              |  |  |
| PA27                  | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OFF                                                          | Internal spe     | eed 1 (PA24)     | 50           | 0                  |  |  |
|                       | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ON                                                           | Internal spe     | eed 2(PA25)      | 200          | 00                 |  |  |
|                       | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OFF                                                          | Internal spe     | eed 3(PA26)      | -10          | 00                 |  |  |
|                       | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ON                                                           | Internal spe     | eed 4(PA27)      | -15          | 00                 |  |  |
|                       | Speed arrival signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | 0~3000           | 50               | r/min        | S                  |  |  |
| DV 28                 | output valve value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0000                                                       |                  |                  |              |                    |  |  |
| F AZO                 | When the absolute val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ue of act                                                    | ual speed is eo  | qual to or grea  | ter than the | e valve value,     |  |  |
|                       | the speed arrival signal COIN is output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                  |                  |              |                    |  |  |
|                       | Analog input gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | 0~400            | 250              |              | S                  |  |  |
| DA20                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                  |                  |              |                    |  |  |
| FA23                  | This value is the motor speed per analog voltage; When the motor rated speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                  |                  |              |                    |  |  |
|                       | correspon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ding to 1                                                    | 0V is 2500r/mi   | n, this value is | s set to 250 | ).                 |  |  |
|                       | Position output pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                            | 1~32             | 1                |              | S                  |  |  |
|                       | multiplying ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | 1 02             | I                |              | 0                  |  |  |
|                       | When the incremental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | encoder                                                      | is used, it sets | the pulses of    | position fe  | edback signal      |  |  |
| PA30                  | (PA+, PA-, PB+, PB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) output                                                     | from servo u     | nit. When the    | e closed-lo  | op system is       |  |  |
|                       | formed, the position fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | edback s                                                     | signal output fi | rom CN1 inter    | face to PC   | is converted       |  |  |
|                       | into electronic gear ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tio, so as                                                   | s to adapt to o  | devices with (   | afferent ge  | ear ratio or to    |  |  |
|                       | Desition output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                  |                  |              |                    |  |  |
|                       | frequency division rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | 1~32             | 1                |              | S                  |  |  |
| PA31                  | Refer to PA30 for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | of this naramet  | ler The settin   | n of gear    | ratio requires     |  |  |
|                       | PA31≥PA30. If PA31<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PA30_iti                                                     | s regarded as    | PA31=PA30        | iy ui yeal   | railo requires     |  |  |
| PA29<br>PA30          | Analog input gain       0∼400       250       S         This value is the motor speed per analog voltage; When the motor rated speed corresponding to 10V is 2500r/min, this value is set to 250.       S         Position output pulse multiplying ratio       1~32       1       S         When the incremental encoder is used, it sets the pulses of position feedback signal (PA+, PA-, PB+, PB-) output from servo unit. When the closed-loop system is formed, the position feedback signal output from CN1 interface to PC is converted into electronic gear ratio, so as to adapt to devices with different gear ratio or to |                                                              |                  |                  |              |                    |  |  |
|                       | different leadscrew. Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eter to se                                                   | ction 6.4 for de | etails.          |              |                    |  |  |
|                       | frequency division ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 1~32             | 1                |              | S                  |  |  |
| PA31                  | Refer to PA30 for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | of this paramet  | ter The settin   | a of gear    | ratio requires     |  |  |
|                       | PA31≥PA30. If PA31<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PA30, it i                                                   | s regarded as    | PA31=PA30.       | 5 - 2 - 30an |                    |  |  |

| Relevant<br>Parameter | Name                                                                                 | Range                                                                           | Default<br>Value | Unit            | Applicable<br>Mode |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|-----------------|--------------------|--|--|--|--|
|                       | Position feedback                                                                    |                                                                                 |                  |                 | inouo              |  |  |  |  |
|                       | signal frequency                                                                     | 16~32767                                                                        | 20000            |                 | P.S                |  |  |  |  |
| PA32                  | division ratio                                                                       |                                                                                 |                  |                 | , -                |  |  |  |  |
|                       | When the absolute encod                                                              | When the absolute encoder is used, it sets the pulses feedbacked from the drive |                  |                 |                    |  |  |  |  |
|                       | unit to PC per circle the m                                                          | otor rotates. Refer to                                                          | o section 6.4    | for details.    |                    |  |  |  |  |
|                       | Internal CCW torque                                                                  | 0200                                                                            | 200              | 0/              |                    |  |  |  |  |
|                       | limit                                                                                | 0~300                                                                           | 300              | 70              | P,3                |  |  |  |  |
|                       | It sets the internal torque limit when the servo motor performs CCW rotation. The    |                                                                                 |                  |                 |                    |  |  |  |  |
| PA34                  | setting value is the perce                                                           | ntage of the rated to                                                           | orque. In any    | working me      | ode, both two      |  |  |  |  |
|                       | torque limit are valid.                                                              | When the setting va                                                             | lue exceeds      | the system      | permitted          |  |  |  |  |
|                       | overload capacity, the act                                                           | ual torque limit is the                                                         | e magnificatio   | on of permi     | tted maximum       |  |  |  |  |
|                       | overload.                                                                            |                                                                                 |                  |                 |                    |  |  |  |  |
|                       | Internal CW torque limit                                                             | -300~0                                                                          | -300             | %               | P,S                |  |  |  |  |
|                       | It sets the internal torque                                                          | limit when the ser                                                              | vo motor pe      | rforms CW       | rotation. The      |  |  |  |  |
| PA35                  | setting value is the percer                                                          | ntage of the rated to                                                           | orque. In any    | working m       | ode, both two      |  |  |  |  |
|                       | torque limit are valid. W                                                            | hen the setting va                                                              | lue exceeds      | the maxir       | num overload       |  |  |  |  |
|                       | capacity, the actual torque limit is the permitted maximum overload magnification.   |                                                                                 |                  |                 |                    |  |  |  |  |
|                       | External CCW torque limit                                                            | t 0~300                                                                         | 100              | %               | P,S                |  |  |  |  |
|                       | It sets the external torque                                                          | limit when the serve                                                            | motor perfo      | rms CCW r       | otation. PA36      |  |  |  |  |
| PA36                  | is valid only when the input point FIL is ON; When the setting value exceeds the     |                                                                                 |                  |                 |                    |  |  |  |  |
|                       | maximum overload capacity, the actual torque limit is the permitted maximum          |                                                                                 |                  |                 |                    |  |  |  |  |
|                       |                                                                                      | overload capa                                                                   | acity.           |                 |                    |  |  |  |  |
|                       | External CW torque limit                                                             | -300~0                                                                          | -100             | %               | P,S                |  |  |  |  |
|                       | It sets the external torque limit when the servo motor performs CW rotation. PA37 is |                                                                                 |                  |                 |                    |  |  |  |  |
| PA37                  | valid only when the input point RIL is ON; When the setting value exceeds the        |                                                                                 |                  |                 |                    |  |  |  |  |
|                       | maximum overload capacity, the actual torque limit is the permitted maximum          |                                                                                 |                  |                 |                    |  |  |  |  |
|                       | overload capacity.                                                                   |                                                                                 | 1                |                 |                    |  |  |  |  |
|                       | I orque limit in MANUAL,                                                             | 0~300                                                                           | 100              | %               | S                  |  |  |  |  |
|                       | JOG mode                                                                             | han the serve is in                                                             |                  | r. 100 mag      | de M/here the      |  |  |  |  |
| PAJO                  | It sets the torque limit when the servo is in MANUAL or JOG mode. When the           |                                                                                 |                  |                 |                    |  |  |  |  |
|                       | permitted maximum overlo                                                             |                                                                                 | capacity, the    |                 |                    |  |  |  |  |
|                       |                                                                                      |                                                                                 |                  |                 |                    |  |  |  |  |
|                       | drift compensation                                                                   | -30000~30000                                                                    | 0                | 0.1r/min        | S                  |  |  |  |  |
|                       | Sometimes, when the co                                                               | <br>ommand voltage is (                                                         | )V. the moto     | r still rotates | s at slowest       |  |  |  |  |
| PA43                  | speed. This is due to the                                                            | e slight "drift" of the                                                         | PC or extern     | al comman       | d voltage. If      |  |  |  |  |
|                       | zero-drift phenomenon o                                                              | ccurs on a motor, co                                                            | ount in the re   | versed volt     | age value in       |  |  |  |  |
|                       |                                                                                      | PA43.                                                                           |                  |                 | C                  |  |  |  |  |
|                       | Analog command mode                                                                  | 0 - 1                                                                           |                  |                 |                    |  |  |  |  |
|                       | selection                                                                            | 0~1                                                                             | U                |                 | 5                  |  |  |  |  |
| PA46                  | PA46=0: When PA4=1 (e>                                                               | ternal analog voltag                                                            | je speed con     | trol mode),     | and the input      |  |  |  |  |
|                       | analog range is -10V~10                                                              | V, positive voltage                                                             | corresponds      | to motor C      | CW rotation,       |  |  |  |  |
|                       | negative voltage correspo                                                            | nds to motor CW rot                                                             | tation.          |                 |                    |  |  |  |  |

# 

#### DAT Series AC Servo Drive Unit User Manual

| Relevant  | Name                                                                                  | Range                 | Default        | Unit                         | Applicable     |  |  |  |
|-----------|---------------------------------------------------------------------------------------|-----------------------|----------------|------------------------------|----------------|--|--|--|
| Farameter | PA46=1 When $PA4=1$ (extern                                                           | rnal analog voltag    |                | trol mode)                   | and the input  |  |  |  |
|           | analog range is 0V~10V. the                                                           | e input points SC     | 1. SC2 are fo  | or the CCW.                  | CW rotation    |  |  |  |
|           | respectively.                                                                         |                       | .,             | ,                            |                |  |  |  |
|           | Alarm output inverted                                                                 | 0~1                   | 0              |                              | S              |  |  |  |
| DA 47     | PA47=0: when servo unit i                                                             | s faulty, the alarr   | n signal ALN   | / output op                  | to-coupler is  |  |  |  |
| PA47      | disconnected.                                                                         |                       |                |                              |                |  |  |  |
|           | PA47=0: when the servo un                                                             | it is faulty, the ala | irm signal AL  | M output op                  | oto-coupler is |  |  |  |
|           | connected.                                                                            |                       |                |                              |                |  |  |  |
|           | Analog command filter                                                                 | 1~3000                | 1000           | HZ                           |                |  |  |  |
|           |                                                                                       |                       | efficient vel  |                              | -4             |  |  |  |
| PA50      | The smaller the analog c                                                              | ommand filter co      | efficient val  | ue is, the                   | stronger the   |  |  |  |
|           | to the speed command will                                                             | be slower: the        | reater the v   | 100 Small, I<br>value is the | weaker the     |  |  |  |
|           | anti-disturbance canability is                                                        | and the quicker       | the response   | aiue is, trie                |                |  |  |  |
|           | The maximum deceleration                                                              |                       |                |                              |                |  |  |  |
|           | time before the safety brake                                                          | e 0~30000             | 50             | ms                           | P,S            |  |  |  |
|           | enabled                                                                               |                       |                |                              |                |  |  |  |
| PA51      | When it is needed to lock a r                                                         | unning motor thro     | ugh safety br  | ake, decele                  | ration should  |  |  |  |
|           | be performed in advance. The deceleration time is set by PA51. If the motor speed     |                       |                |                              |                |  |  |  |
|           | exceeds the speed set by PA53 when the time ends, the motor axis is locked by         |                       |                |                              |                |  |  |  |
|           | force. Refer to section 6.2 for                                                       | or details.           |                | 1                            | 1              |  |  |  |
|           | Servo lock delay time                                                                 | 0~30000               | 50             | ms                           | P,S            |  |  |  |
|           | When the safety brake is needed to lock the motor, the SON signal should be           |                       |                |                              |                |  |  |  |
| PA52      | turned OFF after the motor stops. In the process of status transition from servo lock |                       |                |                              |                |  |  |  |
|           | to safety brake lock, the safety brake is enabled only after the delay time set by    |                       |                |                              |                |  |  |  |
|           | PA52 ends. The position of motor axis does not change. Refer to section 6.2.          |                       |                |                              |                |  |  |  |
|           | Motor speed when safety                                                               | 5~3000                | 30             | r/min                        | P,S            |  |  |  |
| PA53      | Drake is enabled                                                                      | ad when the sete      | tu braka ia ar | ablad: Dofa                  | r to soction   |  |  |  |
|           | ne maximum rotation speed when the safety brake is enabled; Refer to section          |                       |                |                              |                |  |  |  |
|           | Inner enchie                                                                          | 0~1                   | 0              |                              | De             |  |  |  |
|           |                                                                                       | 0,~1                  | 0              |                              | Ρ, δ           |  |  |  |
| PA54      | When there is no SON signal, the motor is enabled through the servo inner.            |                       |                |                              |                |  |  |  |
|           | PA54=0: when the external                                                             | input signal SON      | is ON, the mo  | or thon sign                 |                |  |  |  |
|           | Motor overheat alarm                                                                  |                       |                |                              |                |  |  |  |
|           | shielded                                                                              | 0~2                   | 0              |                              | P,S            |  |  |  |
|           | PA57=0: shield alarm                                                                  |                       |                |                              |                |  |  |  |
| PA57      | PA57=1; comply with the alarm logic, namely, the motor temperature detection          |                       |                |                              |                |  |  |  |
|           | switch is normally-closed sw                                                          | vitch                 | -              |                              |                |  |  |  |
|           | PA57=2: comply with the                                                               | alarm logic, name     | ely, the moto  | or temperatu                 | ure detection  |  |  |  |
|           | switch is normally-open swit                                                          | ch                    |                |                              |                |  |  |  |
| PA58      | GSKLINK servo axis numbe                                                              | r 1~5                 | 1              |                              | P,S            |  |  |  |

## Chapter 7 Parameters

| Relevant<br>Parameter | Name                                                                          | Range           | Default<br>Value | Unit      | Applicable<br>Mode |  |  |
|-----------------------|-------------------------------------------------------------------------------|-----------------|------------------|-----------|--------------------|--|--|
|                       | The servo unit which sets up                                                  | serial communio | cation with Cl   | NC system | is more than       |  |  |
|                       | one. Set the servo axis number corresponding to CNC system. The number should |                 |                  |           |                    |  |  |
|                       | not be repeated.                                                              |                 |                  |           |                    |  |  |
|                       | GSKLINK communication                                                         | 0∼4             | 1                |           | PS                 |  |  |
| -                     | baudrate selection                                                            | 0 4             | 1                |           | 1,0                |  |  |
|                       | Set the communication baudrate of servo drive unit and PC. Only when the      |                 |                  |           |                    |  |  |
|                       | baudrates are consistent, can the communication be performed.                 |                 |                  |           |                    |  |  |
|                       | PA59=0: Shield GSKLink communication;                                         |                 |                  |           |                    |  |  |
| 1 439                 | PA59                                                                          | =1: baudrate is | set to 500k;     |           |                    |  |  |
|                       | PA59=2: baudrate is set to 600k;                                              |                 |                  |           |                    |  |  |
|                       | PA59=3: baudrate is set to 800k;                                              |                 |                  |           |                    |  |  |
|                       | PA59=4: baudrate is set to 1M.                                                |                 |                  |           |                    |  |  |
|                       |                                                                               |                 |                  |           |                    |  |  |

### CHAPTER 8 ABNORMALITIES AND REMEDIES



#### cautions

 When the servo drive unit or motor is needed to bE dismantled for inspection or maintenance, please contact our technical personnel or operate under guidance of professionals.
 Once an abnormality occurs in servo drive unit, cut off the power for more than 5min before inspection or maintenance to avoid residual voltage.

#### 8.1 Abnormalities Caused by Misuse

#### 8.1.1 Speed Mode

| Abnormality                          | Possible Reason                | Inspection and Remedy                     |  |
|--------------------------------------|--------------------------------|-------------------------------------------|--|
|                                      | 1. Wrong working mode is       | Check the setting of PA4.                 |  |
|                                      | selected.                      |                                           |  |
| In analog command                    | 2. No enable signal is input.  | Check whether the SON connection is       |  |
| speed mode, the                      |                                | correct Check dP- in to see               |  |
| motor does not work                  |                                | whether the enable signal is connected    |  |
| when a speed                         |                                | or set PA54 to 1 to enable the motor by   |  |
| command is                           |                                | force                                     |  |
| specified.                           | 3 No 24V for the I/O           | Check whether the GND and COM+            |  |
|                                      | connection line                | ends are 24V with a universal meter       |  |
|                                      |                                |                                           |  |
|                                      | 1. Improper speed loop gain    | Restore the motor default parameter or    |  |
|                                      | setting                        | manually set the PA5, PA6, PA7, PA8.      |  |
| motor is running (no                 | 2. Incorrect shielding line    | Connect the line connection according to  |  |
| load connected)                      | connection                     | the connection diagram in speed mode      |  |
|                                      |                                | described in section 3.6.                 |  |
|                                      | There is no temperature        | A. When there is no temperature sensor,   |  |
| Alarm Err-5 occurs                   | sensor in the servo motor, or  | set PA57=0;                               |  |
| after power-on                       | the PA57 sets the sensor type  | B. When there is temperature sensor, set  |  |
|                                      | incorrectly.                   | the PA57 according to section 7.2.        |  |
|                                      | FSTP, RSTP drive unit input    | A. Check whether the FSTP, RSTP is        |  |
| Alarm Err-7 occurs<br>after power-on | prohibition terminals are OFF. | connected to COM                          |  |
|                                      |                                | B. When the prohibition function is not   |  |
|                                      |                                | used, set PA20 to 1 to shield this alarm. |  |
| Motor high-speed<br>running disabled | Parameter PA23 or PA29 is      | Refer to section 7.2 and set the          |  |
|                                      | set incorrectly.               | parameter according to the motor          |  |
|                                      |                                | nameplate.                                |  |
|                                      | Parameters PA51, PA52,         | Refer to section 7.2 and increase the     |  |
| Motor cannot stop                    | PA53 are set incorrectly.      | setting value of PA51, PA52, reduce that  |  |
|                                      |                                | of the PA53.                              |  |

## 8.1.2 Position Mode

| Abnormality                                                                                  | Possible Reason                                                                                                                                                                                                                                                                                            | Inspection and Remedy                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In position mode,<br>when a pulse<br>command is<br>specified, the<br>motor does not<br>work. | 1. Wrong working mode or command mode is selected.                                                                                                                                                                                                                                                         | Check the setting of PA4, PA14.                                                                                                                                                                                                                                                                                                                                     |
|                                                                                              | 2. No enable signal is input.                                                                                                                                                                                                                                                                              | Check whether the SON connection is<br>correct. Check $dP - In$ to see<br>whether the enable signal is<br>connected, or set PA54 to 1 to enable                                                                                                                                                                                                                     |
|                                                                                              | 3. No 24V for the I/O connection line.                                                                                                                                                                                                                                                                     | Check whether the GND and COM+<br>ends are 24V with a universal meter.                                                                                                                                                                                                                                                                                              |
| Large vibration<br>occurs when the<br>motor is running.                                      | Speed loop proportional gain,<br>integral time constant value are<br>set incorrectly; (PA5, PA6)<br>Position loop proportional gain is<br>set incorrectly. (PA9).                                                                                                                                          | Restore the default motor parameter<br>or manually set the parameters PA5,<br>PA6, PA9.                                                                                                                                                                                                                                                                             |
| Inaccurate<br>position control                                                               | <ol> <li>Electronic gear ratio is set<br/>incorrectly.</li> <li>External interference causes<br/>the received pulses inaccurate.</li> <li>When the pulse command is<br/>input (the drive unit is connected<br/>to single end), the current-limit<br/>resistance is not connected in<br/>series.</li> </ol> | Correct the electronic gear ratio.<br>When the command pulses are less<br>than pulses displayed on dP-[Po], it<br>means there is external interference.<br>A. Use difference circuit as far as<br>possible;<br>B. Connect the shielding line<br>correctly.<br>C. Keep far away from the<br>interference source.<br>Refer to the position command wiring<br>diagram. |
|                                                                                              | 4. Machine connection fault                                                                                                                                                                                                                                                                                | When the command pulses equal to<br>the pulses displayed on $dP-CP_0$ (the<br>pulses after electronic gear ratio<br>calculation), it means the system<br>controlled side is normal. Check<br>whether the machine connection is<br>loose or faulty.                                                                                                                  |
| The motor swings<br>greatly during<br>start or stop.                                         | The load inertia is great. The acceleration/deceleration time corresponding to PC commands are too small.                                                                                                                                                                                                  | Increase the acceleration/deceleration<br>time for smooth start or stop, or<br>reduce the position loop proportional<br>gain.                                                                                                                                                                                                                                       |

# 8.2 Alarms and Remedies

| The servo drive unit is provided with multiple protection functions. When a fault is detected after            |
|----------------------------------------------------------------------------------------------------------------|
| power-on, the servo will stop the motor, and $\boxed{Err-\Box}$ will be displayed on the operation panel.      |
| The alarm code can also be viewed under menu $dP-Err$ . This section also offers remedies for troubleshooting. |
| 5                                                                                                              |

| No.   | Meaning                                                                                                                    | Main Reason                                             | Remedy                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|
| Err-1 | AC current motor<br>speed exceeds the<br>value set by PA23<br>(refer to the speed<br>upper limit set by<br>parameter PA23) | 1, encoder feedback signal abnormal                     | Check the motor encoder and its signal connection status. |
|       |                                                                                                                            | 2. The specified command exceeds the limit set by PA23. | Check the electronic gear ratio<br>and PA23 setting.      |
| Err-2 | Main circuit DC bus voltage excessive                                                                                      | 1. Braking resistor is disconnected<br>or damaged.      | Check braking resistor and its connection.                |
|       | Ū.                                                                                                                         | 2, Braking resistor is unmatched                        | A, Change to a new braking                                |
|       |                                                                                                                            | (resistance value is excessive)                         | resistor whose resistance is                              |
|       |                                                                                                                            | Note: Smaller resistance means                          | matched with the power.                                   |
|       |                                                                                                                            | greater current, which will easily                      | B, Reduce the ON/OFF                                      |
|       |                                                                                                                            | cause damage to the braking pipe                        | frequency according to actual                             |
|       |                                                                                                                            | of the braking circuit.                                 | usage.                                                    |
|       |                                                                                                                            | 3, Power supply voltage instable;                       | Check the power supply.                                   |
|       |                                                                                                                            | 4. Internal braking circuit damaged.                    | Change the drive unit.                                    |
| Err-3 | Main circuit DC bus                                                                                                        | 1. If it occurs when the motor is                       | Check the input power line                                |
|       | voltage too low                                                                                                            | running, the line of input power is                     |                                                           |
|       |                                                                                                                            | cut off or the connection is                            |                                                           |
|       |                                                                                                                            | improper.                                               |                                                           |
|       |                                                                                                                            | 2. If it occurs when the motor is                       | Check the power voltage                                   |
|       |                                                                                                                            | running, it means the input power                       |                                                           |
|       |                                                                                                                            | voltage is lower than AC130V.                           |                                                           |
|       |                                                                                                                            | 3. If it occurs when the power is                       | Change the drive unit                                     |
|       |                                                                                                                            | turned ON, it means the braking                         |                                                           |
| Err 1 | The value in position                                                                                                      | 1. The pulse command frequency is                       | Check the command frequency                               |
| ⊏।1-4 | difference counter                                                                                                         | too high or the electronic gear ratio                   | of principal PC: check the                                |
|       | exceeds the setting                                                                                                        | is too large                                            | electronic gear ratio set by                              |
|       | value (refer to the                                                                                                        |                                                         | PA12/PA13.                                                |
## Chapter 8 Abnormalities and Remedies

| No.     | Meaning                | Main Reason                            | Remedy                            |
|---------|------------------------|----------------------------------------|-----------------------------------|
|         | range set by           | 2. The load inertial is excessive or   | A, Check the setting of motor     |
|         | parameter PA17);       | the drive unit torque is insufficient. | torque limit.                     |
|         | (When PA18=0,          |                                        | B, Improve the drive unit and     |
|         | detects the position   |                                        | motor power.                      |
|         | difference alarm,      |                                        | C, Lighten the load.              |
|         | when PA18=1, does      | 3. Motor encoder fault or encoder      | A, Check the motor encoder and    |
|         | not detects the        | zeroing error.                         | its connection.                   |
|         | position difference    |                                        | B, re-zeroing the encoder.        |
|         | alarm)                 | 4. In position mode, the motor U, V,   | Correct the connection.           |
|         |                        | W phase sequence is wrong.             |                                   |
|         |                        | 5. position loop or speed loop gain    | Adjust the speed loop or position |
|         |                        | setting is too small (refer to         | loop gain.                        |
|         |                        | parameter PA5, PA6, PA9)               |                                   |
|         |                        | 6. The valid range of position         | Set the PA17 correctly.           |
|         |                        | difference is set too small.           |                                   |
| Err-5   | Motor overheat alarm;  | 1. No temperature detection device     | Set PA57=0, shield the motor      |
|         | the drive unit detects | in the motor.                          | overheat alarm.                   |
|         | the overheat alarm     | 2. The temperature detection           | Set the temperature detection     |
|         | signal output by the   | device type is different with the one  | device type correctly by PA57.    |
|         | motor. (when           | set by parameter PA57.                 |                                   |
|         | PA57=0, the motor      | 3. Overload leads to severe heat of    | Increase the power of drive unit  |
|         | overheat alarm is not  | the motor.                             | or reduce the load.               |
|         | detected)              | 4. In case of severe load, the         | Reduce the start/stop frequency,  |
|         |                        | start/stop frequency is too high.      | and improve the heat radiation    |
|         |                        |                                        | condition.                        |
|         |                        | 5. The temperature detection           | Change the AC servo motor.        |
|         |                        | device in the motor is damaged, or     |                                   |
|         |                        | the motor inner fault occurs.          |                                   |
|         |                        | 6. If the motor temperature            | Change the drive unit.            |
|         |                        | detection signal is normal, the drive  |                                   |
| <b></b> | One of emplifier       | Unit is faulty.                        |                                   |
| Ell-0   | Speed amplimer         | to amplify targue limitation           | increase the toque limitation     |
|         | Saturation lauit       | to small torque initiation.            | value so as to increase the       |
|         |                        | 2 In anood mode, LL V/ W/ phoop        | Connect the LL V. W. correctly    |
|         |                        | 2. In speed mode, 0, v, w phase        |                                   |
| Err 7   | Drive prohibition      | The drive prohibition input terminal   | A Check the connection and the    |
|         | abnormal               | terminals ESTP_RSTP are cut            | 24V power of input point          |
|         | abriorniai             |                                        |                                   |
|         |                        |                                        |                                   |
|         |                        |                                        |                                   |
| Err-9   | Motor encoder signal   | 1. Then motor encoder signal is        | Check the connection and signal   |
|         | feedback abnormal      | poor connectedly or the connection     | line welding status.              |
|         |                        | is wrong.                              |                                   |
| 1       |                        |                                        |                                   |



| No.    | Meaning              | Main Reason                           | Remedy                               |
|--------|----------------------|---------------------------------------|--------------------------------------|
|        |                      | 2. Motor encoder signal feedback      | Shorten the cable length within      |
|        |                      | cable is too long, which reduces the  | 30m.                                 |
|        |                      | signal voltage.                       |                                      |
|        |                      | 3. Motor encoder is damaged.          | Change the motor or encoder.         |
|        |                      | 4. Drive unit fault.                  | Change the drive unit.               |
| Err-11 | Drive unit inner IPM | 1. It occurs when the power is ON,    | Remedy for reason A is to            |
|        | module fault         | and the drive unit is not enabled. It | change to a new drive unit.          |
|        |                      | cannot be removed after power-on.     | Remedy for reason B is to check      |
|        |                      | A, drive unit fault                   | the correct the braking resistor     |
|        |                      | B, Short circuit occurs when          | connection.                          |
|        |                      | braking resistor terminal is          |                                      |
|        |                      | grounding                             |                                      |
|        |                      | 2. It occurs when the power is ON,    | It may be caused by external         |
|        |                      | and the drive unit is not enabled. It | interference or poor grounding.      |
|        |                      | is removed after power-on again.      | Check the grounding status and       |
|        |                      |                                       | interference source.                 |
|        |                      | 3. It occurs when the power is        | The remedy for reason A is to        |
|        |                      | turned ON, and the drive unit is      | change the motor line or the         |
|        |                      | enabled. It cannot be removed after   | motor.                               |
|        |                      | power-on.                             | The remedy for reasons B, C is       |
|        |                      | A. short circuit occurs among motor   | to change the drive unit.            |
|        |                      | power line U, V, W, or between U,     |                                      |
|        |                      | V, W and PE.                          |                                      |
|        |                      | B. Drive unit IPM module is           |                                      |
|        |                      | damaged.                              |                                      |
|        |                      | C. Current sampling circuit of drive  |                                      |
|        |                      | unit is cut off.                      |                                      |
|        |                      | 4. It occurs when the motor is        | The remedy for reason A is to        |
|        |                      | starting or stopping and it can be    | recover the motor default            |
|        |                      | removed after power-on.               | parameter.                           |
|        |                      | A, The default parameter of the       | The remedy for reason B is to        |
|        |                      | motor set by drive unit is wrong.     | increase the                         |
|        |                      | B. Then load inertial is too large,   | acceleration/deceleration time,      |
|        |                      | the commanded accelerated speed       | lower down the accelerated           |
|        |                      | is too large when starting or         | speed or load inertial.              |
|        |                      | stopping.                             |                                      |
| Err-12 | Overcurrent alarm    | 1. The motor is running with          | Reduce the load or change a          |
|        |                      | excessive torque for a long time.     | higher power motor.                  |
|        |                      | 2. Poor grounding status              | Make sure the grounding              |
|        |                      |                                       | resistance is less than $10\Omega$ . |
|        |                      | 3. The insulation is faulty.          | Change a new motor.                  |

## Chapter 8 Abnormalities and Remedies

| No.    | Meaning                   | Main Reason                                             | Remedy                                               |
|--------|---------------------------|---------------------------------------------------------|------------------------------------------------------|
| Err-14 | Braking circuit fault     | 1. The braking circuit is low in                        | A. Reduce the load.                                  |
|        |                           | capacity.                                               | B. Change to a new drive device                      |
|        |                           |                                                         | of higher power.                                     |
|        |                           |                                                         | C, Lower down the braking                            |
|        |                           |                                                         | frequency.                                           |
|        |                           | 2. Then inner braking circuit is<br>damaged             | Change to a new drive unit.                          |
|        |                           | 3. Braking resistor is cut off.                         | Re-connect the braking resistor                      |
|        |                           |                                                         | line.                                                |
| Err-16 | Motor thermal             | 1. The rated current parameter is                       | Set the parameter according to                       |
|        | overheat                  | set incorrectly.                                        | the motor nameplate.                                 |
|        |                           | 2. The motor is running with excess                     | A. Reduce the load.                                  |
|        |                           | current for a long time.                                | B. Change to a drive device and                      |
|        |                           | -                                                       | motor of higher power.                               |
|        |                           |                                                         | C Check whether the                                  |
|        |                           |                                                         | mechanical part is abnormal.                         |
| Err-20 | When the power is         | 1. When the power is ON, the drive                      | Recover the motor default                            |
|        | ON, EEPROM alarm          | unit fails to read the data in                          | parameter.                                           |
|        | occurs in the inner       | EEPROM.                                                 |                                                      |
|        | driver unit.              | 2, EEPROM chips or circuit board                        | Change the servo drive unit.                         |
|        |                           | fault;                                                  |                                                      |
| Err-21 | Power open-phase<br>alarm | Power open phase occurs.                                | Check the input power.                               |
| Err-23 | Current sampling          | 1. The current sensor's working                         | Change the drive unit.                               |
|        | error                     | voltage is abnormal or the device is                    |                                                      |
|        |                           | damaged.                                                |                                                      |
|        |                           | 2. Current sampling circuit resistor                    |                                                      |
|        |                           | is damaged.                                             |                                                      |
| Err-25 | Power failure alarm       | 1. The main power is cut OFF after<br>it is ON.         | Check the power supply line.                         |
|        |                           | 2. The rectification part of the drive unit is damaged. | Change the drive unit.                               |
|        |                           | 1. Then interface is poorly                             | Check the encoder interface and                      |
|        |                           | contacted or the cable is poorly                        | shielding line.                                      |
|        | Illegal code of           | shielded.                                               |                                                      |
| Err-32 | encoder signals           | 2 Encodor LLV/W/ signals are                            | Chang a naw anadar                                   |
|        | U,V,W                     |                                                         | Chang a new encoder.                                 |
|        |                           | 3 Encoder interface circuit fault                       | Change to a new drive unit                           |
| Frr-33 | Power charging fault      | The charging circuit is damaged                         | Change the drive unit                                |
| Err 24 |                           | The parameter potting of pulse                          | Sot the DA12/DA12 correctly                          |
| ⊏11-34 | ratio                     | electronic gear ratio is irrational.                    |                                                      |
| Err-35 | Alarm for the absence     | The external brake pipe is loose, or                    |                                                      |
|        | of external brake pipe    | the external brake pipe is faulty.                      | Re-connect the brake pipe, or change the brake pipe. |



| No.    | Meaning                                                  | Main Reason                                              | Remedy                                                                                                               |
|--------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Err-36 | Three-phase main                                         | 1. The three-phase power is OFF or                       | Check the main power and                                                                                             |
|        | power OFF                                                | voltage dip.                                             | ensure the three-phase AC220V<br>input.                                                                              |
|        |                                                          | 2. The power detection circuit is                        | Change the drive unit.                                                                                               |
|        |                                                          | faulty.                                                  |                                                                                                                      |
| Err-37 | Alarm occurs when                                        | The environmental temperature is                         | Improve the environmental                                                                                            |
|        | the temperature of<br>radiator is below<br>-30℃.         | too low.                                                 | temperature.                                                                                                         |
| Err-38 | Alarm occurs when the temperature is                     | 1. The motor overload running for a<br>long time.        | Reduce the load.                                                                                                     |
|        | higher than 75℃.                                         | 2. The environmental temperature is too high.            | Improve the ventilation condition.                                                                                   |
|        |                                                          | 3. The drive unit is damaged.                            | Change the drive unit.                                                                                               |
| Err-39 | Data read error in                                       | 1. PA1 parameter setting error;                          | Set the value of PA1 according                                                                                       |
|        | sensor mode of                                           |                                                          | to the matched encoder type of                                                                                       |
|        | absolute encoder                                         |                                                          | the motor, then, adjust to the default value.                                                                        |
|        |                                                          | 2. Encoder feedback signal CN2 is                        | Check the CN2 line connection                                                                                        |
|        |                                                          | disconnected or poorly connected.                        | status.                                                                                                              |
|        |                                                          | <ol> <li>The absolute encoder is<br/>damaged.</li> </ol> | Change the motor.                                                                                                    |
| Err-41 | Encoder type                                             | The encoder type set by the drive                        | Change the encoder or change                                                                                         |
|        | configuration error                                      | unit is inconsistent with the actual type.               | the encoder type of drive unit.                                                                                      |
| Err-42 | EEPROM error read                                        | 1. PA1 parameter setting error.                          | Set the value of PA1 according                                                                                       |
|        | in absolute encoder                                      |                                                          | to the matched encoder type of                                                                                       |
|        |                                                          |                                                          | the motor, then, adjust to the default value.                                                                        |
|        |                                                          | 2. When the power is ON, the drive                       | Check the CN2 line connection                                                                                        |
|        |                                                          | unit reads encoder EEPROM error.                         | status.                                                                                                              |
|        |                                                          | <ol> <li>Motor encoder EEPROM is<br/>damaged.</li> </ol> | Change the motor.                                                                                                    |
| Err-43 | Check error when                                         | 1. PA1 parameter setting error;                          | Set the value of PA1 according                                                                                       |
|        | EEPROM is read                                           |                                                          | to the matched encoder type of                                                                                       |
|        |                                                          |                                                          | the motor, then, adjust to the default value.                                                                        |
|        |                                                          | 2. After the drive unit reads the                        | Execute the Ab-Set encoder                                                                                           |
|        |                                                          | encoder EEPROM, data check<br>error occurs.              | write operation.                                                                                                     |
| Err-44 | Encoder<br>single-ring/multi-ring<br>configuration error | PA1 parameter setting error;                             | Set the value of PA1 according<br>to the matched encoder type of<br>the motor, then, adjust to the<br>default value. |

### Chapter 8 Abnormalities and Remedies

| No.    | Meaning            | Main Reason                                       | Remedy                      |
|--------|--------------------|---------------------------------------------------|-----------------------------|
| Err-45 | Encoder data check | In sensor mode, data check error                  | Check the grounding status. |
|        | error              | occurs when the encoder current position is read. |                             |

### 8.3 Inspection and Maintenance

# NOTE!

Do NOT use resistance meter or the like to make insulation inspection to the servo unit, otherwise, the servo unit may be damaged!

Do NOT dismantle or repair the servo unit by yourself!

Make sure that the average load rate of drive device is below 80%.

| Category    | ltem              | Period             | Daily Maintenance                             |
|-------------|-------------------|--------------------|-----------------------------------------------|
|             | Abnormal odor     | Every day          | Properly eliminate the odor in time. If it is |
|             |                   |                    | caused by aging equipment, make a             |
|             |                   |                    | replacement.                                  |
| Electric    | Dust, vapor and   | Once every         | Remove it with dry clean cloth or filtered    |
| cabinet     | oil               | month at least     | high-pressure air gun.                        |
| environment | Power cable,      | Once every         | When the external insulation layer and        |
|             | connection        | half-year at least | insulation joints are damaged or aging,       |
|             | terminals         |                    | make a replacement soon; tighten the          |
|             |                   |                    | loose connection terminals with screw         |
|             |                   |                    | driver.                                       |
|             | Radiation fan     | Once every week    | Check whether the wind speed and              |
|             |                   | at least           | ventilation amount is normal, and whether     |
|             |                   |                    | the abnormal heating exists. Change the       |
| Servo unit  |                   |                    | fan if any.                                   |
|             | Dirt retention on | Once every         | Remove it with dry clean cloth or filtered    |
|             | cooling plate     | month at least     | high-pressure air gun.                        |
|             | Loose screw       | Once every         | Tighten the terminal strip, connector, and    |
|             |                   | half-year at least | installation screw with screw driver.         |
|             | Noise, vibration  | Every day          | When the noise or vibration is obviously      |
|             |                   |                    | greater than usual, check the machine         |
|             |                   |                    | connection and repair it.                     |
|             | Dust, vapor and   | Once every         | Remove it with dry clean cloth or filtered    |
| Servo motor | oil               | month at least     | high-pressure air gun.                        |
|             | Measure the       | Once every         | Measure it with a 500V resistance meter.      |
|             | insulation        | half-year          | When the resistance is below 10 M $\Omega$ ,  |
|             | resistance        |                    | please contact our technical personnel.       |
|             | Motor and load    | Once every         | Check the device wear status, connection      |
|             | connection        | half-year          | and sundries with proper tools.               |

# APPENDIX A MODEL CODE PARAMETERS AND FEED SERVO MOTOR TABLE

| Model Code    | Servo Motor Model | Model Code     | Servo Motor Model |
|---------------|-------------------|----------------|-------------------|
| (set by PA01) |                   | (set by PA01 ) |                   |
| 3             | 130SJT-M075D(A)   | 49             | 130ST-M10015H     |
| 4             | 130SJT-M100D(A)   | 50             | 130ST-M10025H     |
| 5             | 110SJT-M040D(A)   | 51             | 130ST-M15015H     |
| 6             | 110SJT-M060D(A)   | 60             | 150ST-M27020H     |
| 7             | 130SJT-M050D(A)   | 65             | 80SJT-M024C       |
| 8             | 130SJT-M100B(A)   | 66             | 80SJT-M024E       |
| 9             | 130SJT-M150B(A)   | 67             | 80SJT-M032C       |
| 10            | 110SJT-M020E      | 68             | 80SJT-M032E       |
| 11            | 110SJT-M040D      | 76             | 110SJT-M040E(A2)  |
| 12            | 110SJT-M060D      | 77             | 110SJT-M060E(A2)  |
| 13            | 130SJT-M040D      | 81             | 130SJT-M150D(A)   |
| 14            | 130SJT-M050D      | 82             | 130SJT-M040D(A)   |
| 15            | 130SJT-M060D      | 83             | 130SJT-M060D(A)   |
| 16            | 130SJT-M075D      | 85             | 130SJT-M040D(A2)  |
| 17            | 130SJT-M100D      | 86             | 130SJT-M050D(A2)  |
| 18            | 130SJT-M100B      | 87             | 130SJT-M060D(A2)  |
| 19            | 130SJT-M150B      | 88             | 130SJT-M075D(A2)  |
| 20            | 130SJT-M150D      | 89             | 130SJT-M100D(A2)  |
| 21            | 130SJT-MZ150B     | 90             | 130SJT-M100B(A2)  |
| 22            | 175SJT-M180B      | 91             | 130SJT-M150B(A2)  |
| 23            | 175SJT-M180D      | 92             | 130SJT-M150D(A2)  |
| 24            | 175SJT-M220B      | 93             | 175SJT-M180B(A2)  |
| 25            | 175SJT-M220D      | 94             | 175SJT-M180D(A2)  |
| 26            | 175SJT-M300B      | 95             | 175SJT-M220B(A2)  |
| 27            | 175SJT-M300D      | 96             | 175SJT-M220D(A2)  |
| 34            | 110ST-M02030H     | 97             | 175SJT-M300B(A2)  |
| 35            | 110ST-M04030H     | 98             | 175SJT-M300D(A2)  |
| 36            | 110ST-M05030H     |                |                   |
| 39            | 130ST-M04025H     |                |                   |
| 45            | 130ST-M05025H     |                |                   |
| 46            | 130ST-M06025H     |                |                   |
| 47            | 130ST-M07720H     |                |                   |

| Model Code     | Servo Motor Model             | Model Code         | Servo Motor Model  |
|----------------|-------------------------------|--------------------|--------------------|
| (set by PA01 ) |                               | (set by PA01)      |                    |
| The mo         | del codes listed below are co | prresponding to ab | solute encoder.    |
| 104            | 80SJT-M024C(A4I)              | 148                | 130SJT-M100B(A4I)  |
| 105            | 80SJT-M024C(A4SI)             | 149                | 130SJT-M100B(A4SI) |
| 106            | 80SJT-M024E(A4I)              | 150                | 130SJT-M100D(A4I)  |
| 107            | 80SJT-M024E(A4SI)             | 151                | 130SJT-M100D(A4SI) |
| 108            | 80SJT-M032C(A4I)              | 152                | 130SJT-M150B(A4I)  |
| 109            | 80SJT-M032C(A4SI)             | 153                | 130SJT-M150B(A4SI) |
| 110            | 80SJT-M032E(A4I)              | 154                | 130SJT-M150D(A4I)  |
| 111            | 80SJT-M032E(A4SI)             | 155                | 130SJT-M150D(A4SI) |
|                |                               |                    |                    |
| 122            | 110SJT-M040D(A4I)             | 168                | 175SJT-M150D(A4I)  |
| 123            | 110SJT-M040D(A4SI)            | 169                | 175SJT-M150D(A4SI) |
| 124            | 110SJT-M040E(A4I)             | 170                | 175SJT-M180B(A4I)  |
| 125            | 110SJT-M040E(A4SI)            | 171                | 175SJT-M180B(A4SI) |
| 126            | 110SJT-M060D(A4I)             | 172                | 175SJT-M180D(A4I)  |
| 127            | 110SJT-M060D(A4SI)            | 173                | 175SJT-M180D(A4SI) |
| 128            | 110SJT-M060E(A4I)             | 174                | 175SJT-M220B(A4I)  |
| 129            | 110SJT-M060E(A4SI)            | 175                | 175SJT-M220B(A4SI) |
|                |                               | 176                | 175SJT-M220D(A4I)  |
| 140            | 130SJT-M040D(A4I)             | 177                | 175SJT-M220D(A4SI) |
| 141            | 130SJT-M040D(A4SI)            | 178                | 175SJT-M300B(A4I)  |
| 142            | 130SJT-M050D(A4I)             | 179                | 175SJT-M300B(A4SI) |
| 143            | 130SJT-M050D(A4SI)            | 180                | 175SJT-M300D(A4I)  |
| 144            | 130SJT-M060D(A4I)             | 181                | 175SJT-M300D(A4SI) |
| 145            | 130SJT-M060D(A4SI)            | 182                | 175SJT-M380B(A4I)  |
| 146            | 130SJT-M075D(A4I)             | 183                | 175SJT-M380B(A4SI) |
| 147            | 130SJT-M075D(A4SI)            |                    |                    |

### APPENDIX B PERIPHERAL EQUIPMENTS

### **B. 1 External Braking Resistor (Optional)**

#### ①. Braking resistor model instruction:



#### ②. Braking resistor dimension:



|            | Specification |     | Dimension (mm) |    |     | Wiring | Lead          |                        |
|------------|---------------|-----|----------------|----|-----|--------|---------------|------------------------|
| Servo Unit | (W/Ω)         | А   | В              | С  | D   | (mm2)  | Length<br>(m) | Length Terminal<br>(m) |
| DAT2030C   | 300/30        | 215 | 205            | 60 | 30  | 2.5    | 1             | M5                     |
| DAT2050C   | 500/22        | 335 | 325            | 60 | 30  | 2.5    | 1             | M5                     |
| DAT2075C   | 1000/15       | 420 | 410            | 61 | 59  | 2.5    | 1             | M5                     |
| DAT2100C   | 1500/10       | 485 | 473            | 50 | 107 | 2.5    | 1             | M5                     |

**③**. Braking resistor installation space



# Dangerous

1. When the servo is turned ON or is running, high voltage and temperature exists on the surface of braking resistor, Do NOT touch it!

2. Please install a protection cover!

3. Inspection and maintenance can be done only after the servo unit is cut OFF for 10mim, and the braking resistor surface temperature decreases to the room temperature.

4. The temperature of braking resistor with aluminum case drops relatively slowly.

### **B. 2 Circuit Breaker and Contactor (Necessary)**

Circuit breaker and contactor should be installed between input power and AC servo unit. They are not just the power switch of servo unit but also a protection method of the power.

- Circuit breaker is a protection switch which can cut off the faulty circuit automatically. It can
  protect the circuit in case of overload, short circuit or undervoltage. To fully exert the servo
  unit overload capability, it is advised to choose the power distribution protection circuit
  breaker.
- AC contactor is to control the ON/OFF of the drive unit through electric protection circuit. It can cut off the power once a system fault is detected, so as to prevent the fault from expanding.

| Servo Unit                                      | DAT2030C | DAT2050C | DAT2075C | DAT2100C |
|-------------------------------------------------|----------|----------|----------|----------|
| Motor current (A)                               | <6       | 6~10.5   | 11~21    | 22~28    |
| Rated current of<br>circuit breaker<br>(AC380V) | 6        | 9        | 20       | 25       |
| Rated current of<br>contactor<br>(AC220V)       | 9        | 15       | 30       | 42       |

The following technical data table is for your consideration.

### Attentions

The rated current of circuit breaker complies with the AC380V voltage classification. When three-phase AC220V current already exists, and AC isolation transformer is not needed, the circuit breaker should be selected according to AC220V voltage classification. The rated current data should be consistent with the class of rated current of contactor.

### **B.3 Three-Phase AC Filter (Recommended)**

Three-phase AC filter is a passive low-pass filter. The frequency range is 10kHz $\sim$ 30MHz. It is used to suppress the high-frequency noise from the power end of servo unit. When other equipments are interfered by this noise, the three-phase AC filter is recommended.

The following technical data table is for your consideration.

| Motor Power (kw)     | 0.5~1.2 | 1.5~2.3 | 2.3~3.9 | 4~6  |
|----------------------|---------|---------|---------|------|
| Rated Current (A)    | 9       | 15      | 30      | 42   |
| Rated Current (V)    |         | 2       | 20      |      |
| Leakage Current (mA) | ≤0.5    | ≤0.5    | ≤0.5    | ≤0.5 |

Cautions for filter installation:

- > Make sure the metal shell of the filter and electric cabinet is well connected and grounded.
- There should be a certain distance between filter input and output lines (parallel connection is forbidden) in case that the effectiveness of the filter is reduced.
- The filter should be installed at the entrance of power line to the device, and the filter input line in the cabinet should be as short as possible, so as to lower down the radiation interference.

### **B.4 Isolation Transformer (Necessary)**

It is used to reduce interference of power and electromagnetic field. The type should be selected according to the rated capacity, load rate and duty cycle.

- When servo motor power ≥1kW, three-phase isolation transformer should be adopted; When single axis is used, it is advised to select the capacity of isolation transformer ≥ servo motor power × 80%(70%~100% are available).
- ②. When more than two axes are used, it is advised to select the capacity of isolation transformer ≥ servo motor power × 70% (60%~80% are available).

| Model  | Capacity (kVA) | Phase        | Input<br>voltage (V) | Output<br>voltage (V) |
|--------|----------------|--------------|----------------------|-----------------------|
| BS-120 | 1.2            |              |                      |                       |
| BS-200 | 2.0            | Three phase  |                      |                       |
| BS-300 | 3.0            | Three-phase  | 380                  | 220                   |
| BS-400 | 4.0            |              | 000                  | 220                   |
| BD-80  | 0.8            | Single-phase |                      |                       |
| BD-120 | 1.2            |              |                      |                       |

Table B-1 Specification of isolation transformer

The following drawings show the dimensions of isolation transformer. (unit: mm)



Fig. B-1 Outline dimension of BS-120



Fig. B-2 Outline dimension of BS-200



Fig. B-3 Outline dimension of BS-300



Fig. B-4 Outline dimension of BS-400







Fig. B-6 Outline dimension of BD-120



### APPENDIX C VERSION UPGRADE INSTRUCTION

The parameters described in this manual can be applied for DAT2000 Series V1.05 Version and DAT 2000C Series V1.01 Version (version can be viewed through PA2). The DAT2000 Series V1.05 is issued for the first time; DAT2000C Series V1.05 is adjusted version based on DAT2000C V1.03.

• Parameters upgrade instruction:

| No.  | Parameter Meaning (V1.03)          | Parameter Meaning (V1.05)               |  |
|------|------------------------------------|-----------------------------------------|--|
| PA2  | Software version (default value is | Software version (default value is 105) |  |
|      | 103)                               |                                         |  |
| PA6  | Speed loop integral time constant  | Speed loop integral time coefficient    |  |
| PA19 | Reserved                           | Analog speed command inverted           |  |
| PA22 | Encoder zero point signal (CZ)     | Pulse feedback output inverted          |  |
|      | output position                    |                                         |  |
| PA29 | Zero speed output valve value      | Analog input gain                       |  |
| PA30 | Reserved                           | Position output pulse multiplying ratio |  |
| PA31 | Reserved                           | Position output pulse frequency         |  |
|      |                                    | division coefficient                    |  |
| PA32 | Reserved                           | Drive unit feedback pulses              |  |
| PA42 | Analog command mode selection      | Reserved                                |  |
| PA45 | Analog speed command inverted      | Reserved                                |  |
| PA46 | Analog command filter coefficient  | Analog command mode selection           |  |
| PA47 | Analog input gain                  | Alarm output inverted                   |  |
| PA49 | Inner enable                       | Reserved                                |  |
| PA50 | Reserved                           | Analog command filter coefficient       |  |
| PA51 | Alarm output inverted              | The maximum deceleration time           |  |
|      |                                    | before the safety brake enabled         |  |
| PA52 | Reserved                           | Servo lock delay time                   |  |
| PA54 | Servo lock delay time              | Inner enable                            |  |
| PA55 | The maximum deceleration time      | Reserved                                |  |
|      | before the safety brake enabled    |                                         |  |

• Motor model upgrade instruction:

| Servo Motor Model | V1.03 Motor Model Code | V1.05 Motor Model Code |
|-------------------|------------------------|------------------------|
| 80SJT-M024C(A4I)  | 4                      | 104                    |
| 80SJT-M024C(A4SI) | 5                      | 105                    |
| 80SJT-M024E(A4I)  | 6                      | 106                    |
| 80SJT-M024E(A4SI) | 7                      | 107                    |
| 80SJT-M032C(A4I)  | 8                      | 108                    |
| 80SJT-M032C(A4SI) | 9                      | 109                    |
| 80SJT-M032E(A4I)  | 10                     | 110                    |
| 80SJT-M032E(A4SI) | 11                     | 111                    |

| Serve Motor Model  | V1.03 Motor Model | V1.05 Motor Model |
|--------------------|-------------------|-------------------|
|                    | Code              | Code              |
| 110SJT-M040D(A4I)  | 22                | 122               |
| 110SJT-M040D(A4SI) | 23                | 123               |
| 110SJT-M040E(A4I)  | 24                | 124               |
| 110SJT-M040E(A4SI) | 25                | 125               |
| 110SJT-M060D(A4I)  | 26                | 126               |
| 110SJT-M060D(A4SI) | 27                | 127               |
| 110SJT-M060E(A4I)  | 28                | 128               |
| 110SJT-M060E(A4SI) | 29                | 129               |
|                    |                   |                   |
| 130SJT-M040D(A4I)  | 40                | 140               |
| 130SJT-M040D(A4SI) | 41                | 141               |
| 130SJT-M050D(A4I)  | 42                | 142               |
| 130SJT-M050D(A4SI) | 43                | 143               |
| 130SJT-M060D(A4I)  | 44                | 144               |
| 130SJT-M060D(A4SI) | 45                | 145               |
| 130SJT-M075D(A4I)  | 46                | 146               |
| 130SJT-M075D(A4SI) | 47                | 147               |
| 130SJT-M100B(A4I)  | 48                | 148               |
| 130SJT-M100B(A4SI) | 49                | 149               |
| 130SJT-M100D(A4I)  | 50                | 150               |
| 130SJT-M100D(A4SI) | 51                | 151               |
| 130SJT-M150B(A4I)  | 52                | 152               |
| 130SJT-M150B(A4SI) | 53                | 153               |
| 130SJT-M150D(A4I)  | 54                | 154               |
| 130SJT-M150D(A4SI) | 55                | 155               |
|                    |                   |                   |
| 175SJT-M150D(A4I)  | 68                | 168               |
| 175SJT-M150D(A4SI) | 69                | 169               |
| 175SJT-M180B(A4I)  | 70                | 170               |
| 175SJT-M180B(A4SI) | 71                | 171               |
| 175SJT-M180D(A4I)  | 72                | 172               |
| 175SJT-M180D(A4SI) | 73                | 173               |
| 175SJT-M220B(A4I)  | 74                | 174               |
| 175SJT-M220B(A4SI) | 75                | 175               |
| 175SJT-M220D(A4I)  | 76                | 176               |

| Servo Motor Model  | V1.03 Motor Model<br>Code | V1.05 Motor Model<br>Code |
|--------------------|---------------------------|---------------------------|
| 175SJT-M220D(A4SI) | 77                        | 177                       |
| 175SJT-M300B(A4I)  | 78                        | 178                       |
| 175SJT-M300B(A4SI) | 79                        | 179                       |
| 175SJT-M300D(A4I)  | 80                        | 180                       |
| 175SJT-M300D(A4SI) | 81                        | 181                       |
| 175SJT-M380B(A4I)  | 82                        | 182                       |
| 175SJT-M380B(A4SI) | 83                        | 183                       |